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- ABSTRACT
FOR

FINAL REPOR11

FOR A
DESIGN STUDY FOR

AN OPTIMAL NON-LINEAR RECEIVER/DEMODULATOR

This report presents the results of investigation on the

optimal performance of the PM demodulator using Bucy's

statistical non-linear filtering theory. A cyclic phase

non-linear filtering technique has been developed for

modular phase tracking system uses. A realizable implemen-

tation of the optimal cyclic phase non-linear filter based

on the Fourier series representation of the cyclic density

function has been derived.

The work described in this report is restricted to the

first-order phase process, for faster computation in digital

simulations and for extensive research results available in

Weiner optimum phase-lock loop for comparison purposes. How

ever,.' the technique developed in this program is equally

applicable to higher-order systems as well.

The actual performance of the non-linear filter was investi-

gated using Monte Carlo techniques. The classical phase-

lock loop was also being simulated as a reference for the

non-linear process. The cyclic phase non-linear filter appears
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- to be about 0.7 dB better than the phase lock with respect

to noise alone where the maximum conceivable improvement is

2.2 dB, or the excess noise relative to the ideal is about

~ less in dB than that of the phase-lock loop.

It was not possible due to computing limitations during the

last part of the program to achieve simulation results on
,

the question of signal suppression. However, an experimental

or simulatable technique for measuring signal suppression has

been devised. The total signal-to-noise ratio improvement

relative to the phase-lock loop will consist of the noise

improvement and signal suppression improvement.

The overall results of this study program is highly encourag-

ing. Hardware implementation based on the cyclic phase scheme

appears to be feasible. Significant improvement in performance

in second-order loops is anticipated. More work on this line

is strongly recommended.
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TERMINOLOGY

Ref.
Page

3.1

Symbol

s(t) == signal, A Cos (w t + x(t» + w(t)o

zl,z2 == low -pass normalized equivalents of s

(formally)

(formally)

u(t) dt

w(t) dt

q ==

w(t) == "white" additive measurement noise

~o == spectral density, two-sided, of w(t) (Watt-sec)

r == noise density/signal power ratio

== 2~ /A
2 (sec). 0

x(t) == phase process

u(t) == white noise derivative of x(t)

x(t) == Ku(t)

spectral density (two -sided) of

dll(t) ==

dw(t) ==

3.2

3.1

3.1

3.1

3.1

3.3

3.13

3.5
3.6

3.10 z.
I
n

Zl == Cos x(t) + VI (t)

z2 == Sin x(t) + v2(t)

(z.) == nth discrete time sample of
I n

i == 1,2

3.10

Z == vector observation (zl' zZ)

2rC == T == discrete measurement noise variance on

(dimens ionless)

phase error variance for the optimal estimator

in the associated linear problem (dimensionless)

== discrete driving noise variance on u.
I

(rad2)

== RF
qt.B ==

== R/F
R == ,f2"YCl ==

== ~

3.3

3.10

3.3

3.10

F * !2? f h . l' . h• == ,J~ == tIme constant or t e optIma estImator In t e

associated linea! problem (seconds)

t. == sample interval (seconds)
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TEfuWNOLOGY, Cont'd.

- Ref.
Page Symbol

3.7 o[y(t)] :::: observation operator on y

1 t+D.
:::: -s yeti) dtD. t

3.8 Yn :::: o[y(nD.)]

3.11 F :::: F*/D. :::: time constant for the optimal estimator in

::::Jf the discrete associated linear problem

(dimensionless)

6.1 J{x, t) :::: conditional probahility of x (phase) based on all

,observation through time t
e :::: x-x* :::: estimate error

f (x) 0
:::: d'Xf(x)x

7.4 L(e) :::: cyclic loss function 2(1 -Cos e)

M(e) :::: e + n 2rr

such that -rr < M(e) < rr
~,,~

:::: modulo 2rr operator

- iii -



-
SUPERSCRIPTS AND SUBSCRIPTS

• denotes any variable

-:- := conditional or a posteriori expectation of • based on all

measurements to date, a random variable, function of the

measurements

.* ::: an estimate of .
t

r>J J. dt (formally)• :=

0

so that

o. =
1

do := • dt (formally)

.th d' I f1 Iscrete samp eo·

• :=

• :=
C

o :=
p

time average

pertaining to phase-locked loop estimate
...-.......

pertaining to cyclic estimate x*:= ATN Sin x
c ~

• := pertaining to static phase estimate (Sec.6)s

• = pertaining to conditional mean estimatem

<0> = a priori expectation of 0

- iv -



FIG.
NO.

1-1

5-1

7-1

7-2

7-3

10-la

10-lb

10-lc

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

LIST OF ILLUSTRATIONS

Overall Diagram for Comparative Study of Phase
Estimation Filters

Comparison of Variance for First-Order-Phase
Locked-Loop with Results of Approximate Analyses

Conditional Probability Density Plot - 350th
Time Point

Cyclic Density on the Unit Circle

Cyclic Loss Function L(e) = 2(l-cos e)

Simulation Run Comparing Phase-Lock and Cyclic
Non-Linear Estimates

Simulation Run Comparing Phase-Lock and Cyclic
Non-Linear Estimates

Simulation Run Comparing Phase-Lock and
Cyclic Non-Linear Estimates

Conditional Probability Density Plot - the 70th
Time Point

Conditional Probability Density Plot - the 75th
Time Point

Conditional Probability Density Plot - the 80th
Time Point

Conditional Probability Density Plot - the 85th
Time Point

Conditional Probability Density Plot - the 90th
Time Point

Conditional Probability Density Plot - the 95th
Time Point

Conditional Probability Density Plot - the 100th
Time Point

Conditional Probability Density Plot - the 105th
Time Point

-v-

1.3

5.5

7.8

7.9

7.9

10.la

10.lb

10.lc

10.2a

10.2b

10.2c

10.2d

10.2e

10.2f

10.2g

10.2h



- List of Illustrations (Continued)

LIST OF ILLUSTRATIONS

FIG.
NO.

10-10

10-11

10-12

10-13

11-1

11-2b

11-3

Conditional Probability Density Plot - the 200th
Time Point

Conditional Probability Density Plot - the 350th
Time Point

Monte Carlo Simulation Results

Signal Suppression Measurement

Implementation #1

Further Simplification

Implementation

-vi-

PAGE

10.2i

10.2j

10.3e

10.4a

ll.la

ll.lb

11.2a



TABLE NO. LIST OF TABLES PAGE

10-1 Results of Individual Runs 10.3a
M=56 R==l.O F==lO.

10-2 Results of Individual Runs 10.3b
M==56 R=.75 F=lO.

10-3 Results of Individual Runs 10.3c
M=56 R=.50 F=lO.

10-4 Results of Individual Runs 10.3d
M=56 R=.25 F=lO.

-vii-





-
1. STATEMENT OF PROBLEM

Phase-locked loops in a number of variations constitute one of the very

important basic circuit building blocks available to the communication system

designer. Commonly PLL's are used in preference to passive band-pass

filters in cases where some special narrow banding or sensitivity require

ment precludes the latter.

The sensitivity limit of the ordinary phase-locked loop is reached where the

signal tlrops to a level such that the output phase jitter is somewhere in the

order of 1/2 radian. Beyond this point the phase-locked loop is quite likely

to lose lock and the phase jitter increases very rapidly.

Since even a very few db extension of this threshold may be of considerable

economic value in applications where sensitivity is critical, the subject of

threshold and threshold extension has received considerable theoretical and

developmental emphas is, Van Trees (7), Develet (8,9), Cahn (10), Spilker (12),

among others have given first-order approximate analysis of the threshold

phenomenon. Viterbi (5) has introduced the Fokker-Plank analysis which

provides an exact threshold solution in certain cases. Charles and Lindsey (Ref. 12)

have published experimental data generally confirming Viterbi's Fokker-

Plank analysis. Various modifications of the basic phase-locked circuit

including FM feedback (16), Tanlock (13,15), bank diviSion (14), and sub-

. hannonic operation (17) have been studied as means of extending the threshold

of the basic PLL prototype to some extent in special cases.

The present study was motivated by recent developments (1,2) in the theory

and practical realization of optimum non -linear filters or estimators, capable

in principle of achieving the Bayesian optimal estimate of a variable (here

phase, 8) given some noisy observations of a non-linear functional (here

Sin 8, Cos 8 of the variable plus a dynamical model of the statistics of the

variable (i. e., a state model of the phase). This theory is the natural

extension of the linear Kalman-Buey theory into the domain of non-linear

- 1.1 -



functional observations and as such includes the latter as well as the Weiner

theory as special cases.

This approach leads at the outset to the abandonment of the basic PLL prototype.

Rather, the form of the optimum phase estimator is developed as an outcome

of the theory and the prototype is seen to be quite different in general. In the

special case where the signal-to-noise ratio is very high, i.e., well above

the threshold of the corresponding PLL, the optimal non-linear filter is shown

to approach the phase-locked filter asymptotically in form as well as perfor

mance, an intuitively satisfying result. In general, however, for low

signal/noise ratio the form of the optimal filter differs from the PLL in a

form that would have been quite difficult to derive intUitively; this is probably

the major contribution of the present development.

The overall framework of the present study may be illustrated as a block

diagram as in Figure 1-1. The signal is modelled as an integrated white

noise orBro\mian motion phase modulating a carrier frequency signal Cos w t.o
This type of signal could arise,for example, from frequency modulation by a

signal having an essentially white or flat spectrum, or alternatively, by

doppler effect due to transmitter motion with the target velocity (doppler

frequenc)? having an essentially flat spectrum.

The choice to restrict the present exploratory study to the first-order phase

process (Brownian motion phase) was dictated by several factors including the

fact

1) the Weiner optimum phase-lock loop which is to be used as a point

of performance reference is of first -order and much more extens ive

analyses are available than for higher order loops

2) the optimum non-linear filter is one-dimensional and this makes it

much easier to simulate digitally (i. e. ,faster computation).

However, the basic technique is equally applicable to higher-order problems

and loops and with the expectation that any improvement differential will be

even more apparent in the higher-order loops where the consequences of

loss of lock are more serious.

- 1. 2 -
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I
I
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Figure 1-1

OVERZ\LL DIAGRAM FOR CQI·IPAR!,\TIVE STUDY OF
ESTII~li"\TIO:T FILTERS
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Continuing with reference to Figure 1-1. The true signal A Cos(wot + 8(t»

is corrputed by additive white noise. This noisy phase modulated signal then

constitutes the available observation and the problem is to compare various

means of extracting an estimate, 8*(t), of the phase or information. As a

reference for this process we take the classical phase-locked loop. The

second estimator is the Linearized Kalman -Bucy Filter, and finally the optimum

Non-Linear filter. Since in the simulation we have available the true phase

e(t) we can find the error of each estimate and finally extract the various

error statistics.

For the phase-locked loop and linearized KB filter good approximate expressions

are available against which to compare the experimental statistics. For the

non-linear filter this is not the case, in general, and experimental or Monte Carlo

techniques of this type are the only presently known way of studying its actual

performance.

It should be recognized at the outset that there are two basically different

types of utilization of the phase-locked loop and correspondingly two different

types of criteria against which they may be optimized and evaluated. To dis

tinguish these two types we define the terminology

Continuous Phase Tracking to denote problems such as Doppler tracking

. where an accurate cumulative count of elapsed cycles is significant

and cycle slips induce a lasting error

Modular Phase Tracking to denote problems such as phase demodulation

where only the phase error modulo 2rr is of significance and cycle

slips are of importance only in their transient effect on this modular

error.

In the present study we have addressed particularly the latter problem, i. e.,

Modular Phase Tracking and our approach has been optimized and evaluated

relative to such a criterion. Some incidental results on cycle slippage fall

out but it should be emphasized that more efficient approaches may well exist

where continuous phase tr:cCtcking is a prime objective.

- 1.4 -
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The next few chapters will expand the details of the discrete (sampled)

time representation of the signal processes and optimization of the various

estimators for the problem at hand.
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2. BASIC ORIENTATION TO THE OPTIMAL

NON-LINEAR PHASE ESTIMATOR

Our purpose in this section is to describe the theoretic results in a general

way to try and paint the "big picture" and in general we leave the details to

the references or the later chapters in the text.

First of all, we should discuss the notion of an optimal estimate, for example,

of phase, ,based on some observations. In general, noise effects will mean

that wE! can seldom if evcr hope to estimate the phase perfectly. The most

we can ask is that the average error of estimate be minimized in some sense;

and this sense needs careful definition. The mean-square error criterion,

i.e., (e
2

), is but one of any number of possible "loss functions", L(e).

We shall find in the present context of a phase estimator that the error

criterion L(e)::: (1 - Cos 8) has attractive properties in that it is equivalent

to e2
when E: is small but has the appropriate periodicity when e is large.

Having defined a loss function the estimation problem reduces to choosing that

estimate of the variable which minimizes the expected value of the loss

function, given the observations. This may be derived directly from the

conditional probability density function of the variable given the measurements, i. e. ,

p(x 1zl' z2' ••. )

which summarizes the spread of uncertainty as to the true value of x given

all the measurements zl"" to date. 1£ this conditional density is available

the problem of choosing an "optimal" estimate relative to the loss function

L(e) reduces simply to choosing an estimate x* such as to minimize the

expected loss in the light of the observations

~
L{x*} ::: JL{x* - x) p(xlz

1
, 2

2
, •.• ) dx

or x* is the solution of

0::: SL'(x*-x)p(X!Z.l'Z2, •.• )dx

2.1)

2.2)

provided that

- 2.1 -
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The estimation is thus straightforward once we are given the conditional

dens ity function p(xl z l' ••• ). Finding this conditional dens ity function

thus constitutes the heart of the estimation problem. Our approach is

based on sequential application of Bayes Lemma and reslllts in a recursive

scheme whereby the old density

p(x.\z. l'z. 2'···Zl)1 1- 1-

and a new measurement

are cOlpbined to give the updated density

P(\+l\zi' zi-1' ••. 2 1)

This sequential Bayes rule is developed in simple form in Appendix 1 and

the consequences of its application to the present problem are briefly

previewed in the following paragraphs.

We will be concerned 'with the problem of a phase process given by

Model ::; x +u :
n n

or dx ::; t 2.3)

where u and du are discrete and continuous Gaussian band-
n

limited white noise processes with variance B::; qA and two-sided

spectral density q respectively. Of course, b. is the discrete

time step, and we will assume that A is small enough so that

t We use the nomenclature

t

. u(t) ::; f u(t
1

) dt
1

'
o

t+dt
d u ::; f u(t

1
) dt

1
t

where u(t) is band-limited white noise.

tr(t) is then similar, at least in its important low -frequency characteristics,

to Brownian motion, for which equations of this type (2.3) have a complete

theory. In the sequel we will approximate the u process as Brownian motion

in order to bring this theory to bear and equations of the form of 2.3) may be

interpreted as stochastic differential equations. See section 3.2.
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Observations

where

either equation describes essentially the same phenomenon.

Our interest will be centered on finding estimators x'~ orn
x~'(t) which are functions of the observations.

We take our observation to be of the form, in the continuous

domain

z(t) :::; A Cos (w t + x(t» + w(t)o

where w(t) is white noise of two-sided spectral

density Q •
o

A and co are assumed known so that by normalizing to
o

unit amplitude and heterodyning dovm to baseband via in-

phase and quadrature detectors we have, without any loss in

generality, the effective standardized observations with which

we will deal henceforth.

Discrete Time Form Continuous Time Form

zl :::; Cos xn + vI t dZ
I

:::; Cos xdt + dVIn n

Sinx
N' . -v

Z == + v
2

dZ
2

== Smxdt + dV
22n n n

v == w/A

2.4)

dv.
1

V.
1
n

i:: 1,2 are independent white noises of two

sided spectral dens ity:

21' ==~ == noise density (two-sided)
A2/2 signal power

i:::; 1,2 are independent Gaussian sequences of

variance:
C :: 21'

6.

The phase estimation problem consists in finding an estimator x
n
+

1
, or x*(t)

for the phase process as a function z ...• z. or sample functions z.(t).
1 1 1n 0

The phase-locked loop is of such form, namely:'

t d (). h th d' . . fzl enotes "Zl n ' 1. e., t.e n lscrete tlme pomt 0 Z1
-n

- 2.3 -



- = ~ (Sin (x-x*) dt + Cos x* dV2 - Sin x* dv1)

2.5)

or in discrete fonn

'" -- * + ~ (C '" S' * )xn+1 xn P osxnz2 - mxn z1
n n

2.6)

= x* + ~ (Sinx - x*) + Cosx*vn F"" n n n 2
n

~(F* is small, see Section 3)

- Sinx'~v
n 1

n

where F* =)21' ' .
q The gain F* in this case is determined by

approximating Sin(x-x*) by x-x* and choosing F* to

minimize the mean-square error in the Wiener sense which

can be seen to be R =~ =~ (see Section 4).

The actual error performance of the phase-lock loop can be determined as

Viterbi has done by finding the distribution of e: = x-x* using the Fokker

Plank equation. The result is that the error probability density function,

p(e:, t) is given as the solution to

O~te:,t) = 0 1· 0
2

a€ (p Sin (e:) p) + q~ P
oE:

(1)

2.7)

211:;which has the steady state solution, for the error modulo

a. Cos E:
p(E:) = ~rrI (a)

o
with a. = ~

(=linearized loop SIN)

where I is the oth order Bessel function of imaginary argument. Aso
one might expect when R is small the classical phase-lock loop performs

in an optimal fashion, and for all values R the variance of p(e:) predicts

well the error performance of the phase-lock loop.

(1) Viterbi analizes a plant noise free case, but the same analysis is valid

for our more general situation, see Section 5.

-2.4 -
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The purpose of the present study is to design a phase estimator with optimal

performance for all values of R. Using the theory of non-linear filtering

the optimal filter relative to the Loss Function L(e);:: 1 - Cos € for the

case B == 0, i.e., a constant phase, can be determined analytically as
c1Z

1
(2)

dC l == 21'

dZ
2

== 2r

2.8)

D =

dx* == 2'1'1 (Sin (x-x") dt+ Cos x*dV2 - Sinx*dv;.>

1/2
(C

2
+S

2
)

1 1
where

The reader should note the similarity between this filter which we call the

static phase filter and the phase-lock loop; they differ only in a non-linear,

i. e., data dependent gain factor, D.

x* ==

In the general case with state noise (B,q t 0) one must first solve for the

conditional density function, J(x), as developed in Section 3; then the optimal

estimate relative to the loss function L(e);:: 1 - Cos € is

I'

atn ~e
/\ /\ .

where S, C are the conditional expectations of Sin x and Cos x, namely

/'
S == f Sin (x) J(x) dx

/\
C == f Cos (x) J(x) dx

Now although not yielding a fully closed solution it is of interest to see what

differential equation x~' satisfies in order to relate the optimal non-linear

. filter to the PLL. This is shown to be

dx* == 2.9)

~ ~
(2) Cl and Sl are related to Cos x and Sin x for B == O.

- 2.5 -



dB
q A kZ A/

== - -_. C dt + - d I
2 2r-

A '" kI ...,
dS == - .9.. S dt + - d I2 Zr

..,

[- t D + 4r~3'
£ • dI

dD - 11~112J dt + -ZrD

,.,
dZ

l
f\

with dl == - Cdt

I'J A
dzz - Sdt

/I j\ /\ 1\
W == Sk - Ck . £ == CkZ + SkI w £' == 0

2 1 • -

k
1

A /\!'- /2' j\/\
::= (SC - S C, S - S S)

/Z j\ /\ A 1\/\
k2 == (C - C C, SC - S C )

the /\ 's denote conditional expectation and D==
1\2 /\2 1/2

where (S + C )

'i~';

Now when R is small we show later that ~ == RD(-Sin x*, Cos x*) and

D ~ 1 for small R so that the x* equation agrees with the phase-lock loop

as it should.

Unfortunately in order to build the optimal filter as wand D are in general

unknown the above equation is not a closed solution and it is necessary to find

the. conditional density In of xn+1 given z~... zi
o

' This conditional

density summarizes all the information contained in z· sequence about the
1
0

phase, so that knowledge of this density allows the determination of the estimate

which minimizes any loss function. From our analysis for small R the

phase-lock estimate effectively minimizes the expected value of 1 - Cos (x-x*)

a.s x* ranges over all possible estimators, as we have seen in this summary

and will see in detail later on the estimate which minimizes the above loss

for all R, x* differs by a non -linear gain factor from the phase-lock loop,

and, in fact, the minimum loss is 1 - D
2

. 1 - e R ~ R for R small.
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- We use a sequential convolution equation which updates In (x) to In+I (x)

and evaluate the performance of x~+l computed from knowledge of In+I (x)

by Monte Carlo trials. The non-linear filter has been used as an effective

design tool for other problems with spectacular success, see Ref. 2. The

thesis of Lo (Ref. 3) describes examples where non-linear processing is

mandatory for good performance. Finally we report some preliminary results

on practical synthes is using Fourier methods. The practically oriented

reader may comment that it is too bad that only a first-order phase model was

used, §ls in practise a phase-lock loop is pertinent only for detecting randomly

accelerating phases. Our approach was dictated by exigencies of time and

the fact that until the research of (Ref. 2) appeared it seemed that two-state

dimensional problem required inordinate computing for Monte Carlo evalu

ation. We plan to investigate the general problem in the next year and feel

that the non-linear approach offers even more spectacular performance

betterment for this more realistic problem.
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3. BASIS OF THE DISCRETE SIMULATION

The ultimate objective of the present development is a phase estimator

working in real time. This may be either a continuous (analog) or discrete

time (sampled) system.

The present simulation effort, however, is based on discrete time, digital

representation of the signal, measurement, and filter.

This section treats certain subtle points concerning the sampled representation

of the continuous noise-like signal and measurement, establishes the basis of

the discrete time model, and the optimum phase-locked loop and Kalman-Bucy

filter to serve as points of reference for the non-linear filter.

3.1. The Phase Signal in the Continuous Domain

The continuous signal serving as common input to all three estimators

corresponds to phase modulation by integrated white noise as might corre

spond, for example, to either frequency modulation by a random white

noise-like signal or doppler resulting from a target moving with velocity

modeled as a white-noise-like process. The observed signal with additive

noise is then

s(t) == A Cos [wot + x(t)] + w(t) 3.1)

where
t

x(t) == Kf u(t) dt 3.2)
0

or x(t) == Ku

w(t)

u(t)

is narrowband white noise of spectral density Q (two-sided)
o

is low-pass white noise of spectral density G (two-sided).
u

It follows that the spectrum of x(t) is
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or defining

q - K
2

G w = 2rcf 3.3),- u

G (f) == -9._
x w2

It is convenient to represent the additive noise w in terms of its quadrature

components

w(t) == w (t) Cos (w t) - wZ(t) Sin (w t)
100

where WI and w
2

are low-pass, independent white noise processes of

two-sided spectral density

2~a
3.4)

The negative sign on Wz here is chosen for later convenience.

The factor 2 in 3.4) may be viewed as arising because of folding of the

full IF bandwidth B into the low-pass bandwidth B/2 and may be confirmed

by noting that the total noise power is the same in either representation.

With this convention

Now, since none of the estimators being considered depends on the carrier

frequency directly, the discrete simulation of this process is simplified by

considering it heterodyned down to essentially zero or D. C. Intermediate

Frequency. As is well known, in order to preclude a loss of information due

_ to thefoldi!1g inherent in this pr~)Cess it is necessary to provide separate.in

phase and quadrature channels for the D. C., 1. F.. At the same time it will

be convenient to normalize the amplitude A to unity. Accordingly, multiplying

by again i ,heterodyning by the local oscillator signals (2 Cos wot) and

(-ZSinw t) and discarding the double carrier frequency terms yields the zero
o

frequency IF terms zl and zZ:
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Zl (t)
1= A (2 Cos wot). s(t)

-' zl (t) = Cos x(t) + vI (t)
r

z2(t) = 1(-2Sinwot) • s(t)

I zit) = SinX(t)+~

where VI and v2 are independent white noises of spectral

density (two-sided)

2~
o2r =-

A2

and x is integrated white noise of spectral density (two-sided)

q/w2

The two signals zl z2 are biuniquely equivalent to s in the sense that

they are derivable from s by a simple gain and heterodyne operation and

conversely s is derivable from zl and z2 similarly. There is no loss

or addition of essential information by representing the narrowband process

s by the two quadrature low -pass processes z1 and z2 (or the complex

process zl + iz2)·

It i~ convenient at this point to define the basic parameters

R = ~

= phase error variance

F* = J¥q
= time const.ant

for the optimal estimator in the associated linear problem.
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3.2. Representation and Sampling of "White Noise"

The continuous signal described above, includes "white noise" sources

and as such cannot be represented with any fidelity whatsoever by discrete

samples at a finite spacing 1::.. Nevertheless, we know intuitively that in

some sense the loop filter operation on such signals can be accurately

simulated with such discrete samples provided that they are spaced much

closer than any significant loop time constants. To resolve these apparently

conflicting ideas it is necessary to observe that while we may in principle

refer to a particular signal as "white noise", physically it must have some

cutoff ,at high frequencies. Furthermore, any observing instrument we

use to look at the noise has its own high frequency cutoff so that we can never
\

see "white noise" even if it were present (for one thing, since it would have

infinite variance, it would immediately burn out our instrument). Thus,

whenever we speak of "white noise" what we really mean physically is noise

whose spectrum is flat at least up to frequencies high enoug~ that they are

no longer of significance in the problem at hand, or "low-pass white noise".

One way of dealing with such noise rigorously would be to assign a cutoff

frequency f
c

to each "white noise" generator, and very carefully keep

track of the effect of such cutoffs all the way through the circuit analysis

until the vary end where (hopefully) it could be shown that they could be

made high enough that they had no effect, i.e., that the circuit performance

was asymptotically independent of f for f greater than some criticalc c
value.

There is, however, a simpler and more tractable approach in terms of the Ito

calculus of stochastic differential equations. This results from representing

a "white noise" process, say "w(t)", wherever it OCCU1'S as the rate of the

associated "Brownian noise" "w(t)" defined is the integrated "white noise":

"""w(t) " =
t

J "w(t )" dt
o 1 1 3.8)

For Qurely white noise the above integral has n~ meaning and must be

replaced by a stochastic integral, however, for physical "white noise" the
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"dw" = "w(t)" dt

where the quotation marks denote always that we are referring to band-limited

or physical quantities. Now physical white noise is not at aU well represented

by pure white noise - there is infinite variance in the error of the best such

representation.

"w(t)" ~ wet)

however, physical (bandlimited) Brownian noise is well represented by its

pure Brownian noise counterpart

''W (t)" ~ w(t)

so that at this point we can legitimately, if somewhat heuristically, forget

the physical bandwidth limitation (and the quotation marks). By this artifice

we make available to the problem at hand the full facilities of the very

powerful theory of stochastic differential equations.

A peculiarity of Brownian motion is that the variance of wet) is given by

t t

= Jf E[w(t1) w(tz)] dt
1

dtz00 .

but if w has two-sided spectral density r then the covariance function

in the integral is just ro(t
1

-t
Z

) . so

.~W'(t)ZJ = rt I
i. e.) linear in t.

In a formally similar way, since the successive increments of ware

independcn t

= r dt

- 3.5 -
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Thus we can write eqtn. 3.1) and 3.2) in the form of stochastic differential

eql1::'ltions(Ref.22, sec.2.6)

where E[di1
2J = q dt

E[dv 2J = rdt

from v~hich it follows also that

3.13)

3.14)

3.15)

3.16)

::

:: :: rdt

3.17)

3.18)

Note that x(t) as given above is inherently a Brownian motion, in other

words, it inherently has a high frequency cutoff so that we can deal with

x directly.

The reasons for this transformation are

1) We have obviated the necessity for dealing with intractable "white noise"

2) In place of white noise we now have increments of Brownian motion for

which a full and powerful theory is available (see Ref.l).

Our estimates, as it will turn out, will involve differential equations

driven by z, i. e., equations of the form

y ::: fey) +g(y) • z 3.19)

or in the present nomenclature, since z is a "white noise" process

dy ::: fey) dt + g(y) dZ 3.20)

where dZ :: ACos(w t + x) dt + dV'
o

and we note that by the former rules

E[ (dy)2J :: £2 dt2 + g2 E[ (dz)2J
2:: g rdt
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We will also be concerned with smooth functionals, say g(y), of smooth

functions such as yet) and the differential equations they implicitly satisfy.

That is, for any such functional:

dh(y) =
1 2

h t (y) dy + 2'hIt (y)(dy) + ..• 3.23)

1 2= h'(y) [f(y) dt + g(y) dz] + Zh"(y) g r dt

Now in ordinary calculus we would ignore the second turn on the right as being

of second-order infinitesimal; in the present case of stochastic differential

equations, however, we see that it has a component, namely its expectation,

which is of first-order as given above. This leads to the very important

Ito lemma

dh(y) = h'(y) dy + !h"(Y) E[(dy)2]

[ dh(y)

The extension to successive functionals and to vector valued independent

or independent variables is obvious.

We now show how the same concept of replacing white noise by increments

of its associated Brownian motion leads also to a precise and physicaily

s2.tisryll1gdefinition--·of its-dis'crete samples: We have already noted that

while any physically realizable observing in'strument has a finite bandwidth,

the. exact form of its bandwidth restriction does not matter provided the

bandwidth is in some sense" sufficient". Consequently we are free to choose

the form of the bandwidth restriction for convenience. One form of pre-sampling

bandwidth restriction that is particularly relevant is

, 1 t
O[v(t)] = i:\J v(t1)dt

t-~

i. e., the normalized definite integral of the function over one sample interval.

This is just the integrate and dump transfer function incorporated in so-called

"integrating" digital voltmeters. Note,that by the normalization, that for a

constant or slowly varying (smooth) voltage v

3.24)

3.25)

3.26)

Oev(t)J = v(t-c:) 3.27)

that is, a valid sample of v at some intermediate point by the mean value theorem.

- 3.7 -



\I~J'

The transfer function equivalent of this observation operator is a low-pass-type

having zeroes at all multiples of the sampling frequency so that on sampling

at intervals b. there is ~ aliasing of high frequency parts into very low

frequencies. Our sample then for any function v(t) defined in the continuous

domain and which may include "white noise" or smooth variables is:

v = O[v (nb.)]
n

1 nb.
= is: f v(t1) dt1(n -1)b.

. 1 v - ~ ['\i(nA) - v«n-I)D.Djn

"..

i. e., our samples are just the increments of the Brownian motion v

associated with v. This somewhat drawn out definition of what we mean by

a sample is essential if our sample is to have any meaning for "white noise"

as well as for better behaved functions.

It will be important for the following parts to note that if v is white noise

of spectral density r such that

E[ (dv)2 J = r dt

then

E[v
2J rb. r=

D,.2
= LS.n

This is fully equivalent to stating that the sample process has an effective

two-sided noise bandw idth

B
eff

1= b.

since then

E[v
2J rBeff

r= = is:n
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The important thing about this operational definition o! the samples is

that if the continuous functions are related by a given stochastic differential

equation then their samples so defined should be related by the corresponding

difference equation.

That is, if

dy = f(y) dt + g(y) dv

then for sufficiently small t::.. we should expect that:

Eqtn. 3.36) is indeed seen to follow from 3.35) and the above definitions if

we integrate over one sample period

n!::" n!::" n!::"
. J dy = J f(y) dt + J g(y) dv

(n -l)t::.. (n -1).6. (n - l)t::..

but for t::.. .... 0 , since y, f~ and g are smooth this approaches

from the definition~ eqtn. 3.28), q.e.d ••

Also ~ as a special case~ for our measurement equations which appear in

the form

dz = h(x) dt + dv

it follow s that

z = h(x) + v
n n n
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3.3. Digital Representation of the Signal

Based on the foregoing theory, the digital, i. e., sampled, simulation of the

signal process may be represented by the following equations.

x. == x. 1 + u. 1 3.37)
1 1- 1-

ZI. == Cos (x.) + VI 3.38)
1 1 i

Z2. == Sin (x.) + v2 3.39)
1 .

1 1

vI' v2; and u are independent random normal variates with variance

defined by

2 2
CvI. = v2 . -

1 1

2 Bu. -
1

To relate to the continuous case let one simulation step represent a real-time t::..

3.40)

3.41)

__.~_~~!gt}Jy independent d~~cEete pJ:"ocesssuch as

having an effective two-sided bandwidth equal to

spectral densities are

U .Q:r.__Y may be regarded as
1
~. Consequently the

== t::.C

Thus, to relate to the continuous case, eq. 3.4):

Ie = ~ I
The integrator gain K as defined by eq. 3.2) for the continuous case is seen

to be implicit in equation 3.37). Thus, considering u a constant,

x. == iu
1

or

3.42)

3.43)

x(t) t
== - u

t::.

== ~ Sudt
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Thus by comparison with 3.2) the implicit integrator gain is

K 1
=

b.

so from 3.3) K
2

G
G u

=
w2x

b.B
=

t:-.2 w2

or

It will be convenient to define, for future purposes, the basic parameters

and

It will turn out that F plays the role of the filter time constant in sample

int~rval units, while R is related to the variance of the ideal estimate.
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4. KALMAN-BOCY FILTER-LINEARIZED PROBLEM

The discrete Kalman-Bucy Filter operates directly in the discrete domain on

observation consisting of equations 3.38) and 3.39):

Zl. = Cosx. + vI
1 .

1 1

zz. = Sinx.+vZ1 .
1 1

where x(t), the desired phase information, is governed by the plant model,

equation 3.37)

x. = x. 1 + u.
1 1 - 1

where vI' vZ' ui are serially and mutually independent random

3.38)

3.39)

3.37)

variates with

2 "2 C 3.40)vI = v
2

::0

2"
B 3.41). .....l U =

Note that the presence of the Sin and Cos functions in 3.38) and 3~ 39)means that

the problem is inherently non-linear. The non-linear filter to be discussed

in later sections performs optimally in the presence of this non-linearity.

The Kalman-Buey Filter theory pertains strictly only to the linear problem~

i. e., where the observations z are linear functions of the unknown, x.

This theory may be brought to bear by approximating the problem by

linearization of equations 3.38)and 3.39). This is done by approximating them

as first terms in a Taylor's series expansion about a reasonably good estimate.

This approximation is good roughly under the same circumstances as the

linearized analysis of the phase-locked loop, Le., in the high signal/noise

ratio case where the errors are small. Accordingly, linearizing equations

3.38) and 3.39) around the prior estimate, x'!'
1
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Cos x'l' - (x. - x'!') Sin x~' + vI
1 1 1 1 .

1

4.1)

~ Sin x~' + (x. - x~') Cos x'!' + v
21 1 1 1 .

1

in Matrix notation then the linearized problem is

z. ;:: Z7' + H.• (x. - xn +v.
1 1 1 1 1 1

4.2)

4.3)

where z~ =
I

Z7< ;::
I

H. =
1

Cos x~
1

Sin x~
1

-Sin x7<
1

Cos x7<
I

oz.
1

;::

dX~~
1

and Xl· ;:: x. 1 + ll.
I - I

;::

Denoting the covariance matrL-x of the random vector

C 01
° C

V by.

The extended Kalman-Bllcy one-step predictor of x
i
+

1
is given by

where the ga in:

(Ref. 20, 21)

x1+1 ;:: x7< + G.Iz. - Z~'J
1 II 1 I

'T [ T 4J-1
G

I
. ;:: P.H. H.P,H. +

III 1 1

4.4)

4.5)
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which simplifies to

G. :=
1

P.
1

P. +C
1

4.6)

Pi is the one-step e.redictor error variance (of the linearized problem)

given in general by

T ¢-1 _1-1
P. = (H H + P. 1) + B

1 1-

which simplifies to

P. 1 CP. = B + __1_- _

1 P. 1 + C
1-

In the steady state, P. = P. 1 :; P and we can solve for P as the positive
1 1-

root of

PCP = B+---
P+C

or

B }B2
P = '2 + 4" + BC

In the present case - since the state transition factor (coefficient of x. 1
l-

in 3.8» is 1, the prediction estimate is identical to the filter estimate,

however, their errors are different since

4.7)

4.8)

4.9)

4.10)

- x*- i/i 4.11)

but

4.12)

so

Xi+! - xi+1/i =
~

predictor
error

Xi - XVi + u i

'-----..--J
filter
error

4.13)

or calling S the steady state discrete filter error

P = S+B 4.14)

',,-,' where B = var (u)
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Thus

4.15)

Note well that P and S as derived here pertain only to the linear problem

and as such only approximate the actual performance of the filter on the real

non -linear problem. The true steady state error statistics may be derived by

the Fokker-Plank analysis (Ref. 6 and Sec. 5.1) and are confirmed by our simulations.

Equations 4.10) and 4.16) can be expressed simply in terms of the basic

param~ters F and R as previously defined by

P R[J1 +~ 1 J= + 2F
4F

I

S R[J1 1
- }FJ= +--

4F2

Notice that for large F, i. e., as we approach the continuous case with a very

small sampling interval the predictor variance and the filter approach one,
another:

P -> S .... R

and in particular for F = 10 the two cases (predictor and filter) are within

about 5% of + 0.2 db of the asymptotic (continuous case) value, R. Notice. - ..

that F == 10 corresponds by equation 5.7) to a saUl-pIe rate 10 times the time

constant of the optimal phase-locked loop.

Also note that in the steady state, as P. approaches P, the gain G.
- 1 1

becomes constant, approaching

G =
P+C

and the estimator becomes, from 4.4), written out in detail:

4.16)

4.17)

4.18)

4.19)

x*
i+l

x'!' +
1

P fASin (x. - x'f<)' - VI Sin x~ + v
2

Cos x'f< ]
P+C L 1 1 1 1
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In other words, in the steady state, Le., after the fir~t few time constants, the

K-B filter, with adequate F, approaches the exact point-by-point performance

of the phase-locked loop. This point-by-point correspondence was confirmed

in the earlier simulation runs, and subsequently, the K-B filter was not run,

since its only advantage lies in improved tracking during the initial turn"'on

transient.

For large R, the gain term here approaches (by 4.18»

P R 4.21).-- =
R+CP+C

1 4.22)= l+F

So that in the steady state, the K-B filter becomes

= 1xi + l+F e 4.23

·1....'

e = Sin (xi - xp - vI Sin x* + v2 Cos x*

As we approach the continuous case by letting A -> 0, F becomes» 1 and

we have in effect

Xi+1 = * 1Xi + F e 4.24)

In the limit as A -> 0, 4.23) or 4.24) lead to the corresponding continuous

eqUation

x*

where

1
= pC

F* == FA

= J 2r
q

4.25)

4.26)

'I~'

This is exactly the phase-locked loop equation so that in effect we have shown

two things

1) The K-B filter for the linearized phase estimation problem reduces

to the form of the phase-locked loop in the steady state

2) The resulting steady ste'1te K-B gain parameters may be taken as

the basis for optimization of the phase-locked loop.
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5. PHASE-LOCKED LOOP

The generalized phase-locked loop diagram is as shown below

Cos (wot + x(t» + v(t)

-2 Sin (wot + x*(t»

e

VCO
(1/s) t---:..._-I

'I,...... '

The phase detector equation is:

e ~ [-2 Sin (wot + x*(t» [ Cos [wot + x(t)] + VI Gos wot

-v2 SinwotY
JJlow pass

5.1}

Sin [x(t) - x*(t)] - v1(t) Sinx* +v2Cos x*

-Sinx* Zl(t)+ Cosx* Z2(t)

, In the small error case

e ~ (x-x*) - VI Sinx* + v
2

Cosx*

and the linearized analysis from the K-B theory of the previous section

applies.

From the prototype

x* = Y(s) e
s

and as has been shown from the K-B analysis, the optimized loop for the first

order problem at hand satisfies

5c* =

- 5.1 -
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so we identify

Y(s) 1= p

5.5)

T

i. e., simply a constant. The corresponding mean-square phase error is

then as for the steady-state K-B:

2
(x* - x) = R

Also the loop time constant may be identified as

1
= F*

and the loop two-sided noise bandwidth in cps (two-sided) is

5.6)

5.7)

= l/2T

= F*/2

5.1. Non-Linear Analysis of Phase-Locked Loop

Th~se are the principal results for the linearized first-order phase-locked

loop and may be expected to hold quite well provided R in eqtn. 5.6) is

less than, say, 0.1. As the noise level increases, howeve:r; the linearization

inherent in eqtn. 5.3) breaks down. Analys is oftrie non -linear threshold

region of the PLL has been carried out from a number of different points

of view (Refs. 7, 8,10). Most of these are approximate treatments valid for

small nonlinearity, i. e., at the onset of threshold. In the particular case

of the first -order loop, however, an exact solution is pass ible as developed

by Viterbi (Ref.6) by the Fokker Plank analysis. Viterbi's analysis is for the

case of no noise on the plant, i. e., an essentially static signal (phase)

but for a given loop gain or (bandWidth) but can easily be extended to the case

including signal dynamics.
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The basic describing equations are 3.2), 5.2), and 5.-1) which can be written

for a fixed gain Y:

i* =

e =
.
x =

Ye

Sin (x - x~') - V Sin x* + V Cos x*1 2

Ku

or denoting x - x* = e = estimate error

e = -YSin(e)+Ku -Yv
1

Sinx*+Yv
2

Cos x*

Here Ku is the state noise of spectral density q and V1 and v2 are

indepe~dentquadrature components of measurement noise of spectral

density 21'.

Then by the Fokker-Plank equation the differential equation satisfied by the

probability density, p(E:, t) of E: is

5.9)

op(e,t) =
08

where

o lil2
- ~ (~p) + - - (0 p)

oE: 2 oc2

~ = "infinitesimal mean" of €
= - Y Sine

2 •
o = "infinitesimal variance" of e

5.10)

5.11)

= q + y 2
21' (Sin2 x* + Cos2 x*)

2
= q +2rY

In the equilibrium condition (tr) = 0) and for the boundary conditions

imposed by the fact that p is a probability density on -J{ to J{-t: the

solution of 5.10) is

1" As pointed out by Viterbi, there is no equilibrium variance of error considered

on the 1ine - 00, 00. Only the modulo 2rc error has such meaning and it is

in this respect that we define e.
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p(e) =

(
Cos E: )exp R

1 5.13)

where =
2

g+2rY
2Y 5.14)

.... - .. _~-.- .. -

If there is no state noise (q::: 0) this reduces to

R1 = rY

which IS just l/a in Viterbi's terms.

If the loop is optimized in terms of Y with state noise on the linearized basis
?

by 5.5) or equivalently, by noting that from 5.l3),(e~> is monotone in R
1

and

simply minimizing R
l

, eqtn. 5.14), then

Y = Ji2r

and

5.15)

5.16)

= R as defined by eq. 3.23).

The variance of this distribution (eq. 5.12» is plotted in Figure 5-1 (from

Viterbi, Ref. 6) and labelled "exact" along with two other approximations

(Refs. 7,8) to the non-linear phase-lock error. This will serve as a standard

of comparison for the simulation runs later.

It should be noted at this point that in the limit of R -+ 0, i. e., zero input s ignal/

noise ratio the phase noise (8 2 ) approaches a finite limit. This occurs when the

distribution in eq. 5.13) approaches unifonnity over 0 to 2:rr and the

associated limiting phase noise variance (of error modulo 2rt) is

:rr
2

2
(e

2
>max = "'3 ~ 3.29 rad

Also note that at worst the phase-locked loop is 2.2 db worse than the ideal (but

U"'ohtal"n'l1-)l c ) 11'nC~I' l~lnrlcjl ~1 '~"''1~lU,·"rl in j-ll~"':::o tor'llS t),,,,,, t'~')t l'S l'n ~erln~.i..l L·" u.) -i. l.......l .1. "",--.~.l. IV..L\...c .. J L ,-,U .Ut L.r. \....,~ \..... ,-,.1 ... J,. ..... ~.s., ll~... , L b

of fwL3C_~)lllZ (ignoring signal suppression effects) it seems clear that 2.2 db

is the maximum improvemcilt over the phase-lockeclloop that one could hope lor.
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R

Comparison of variance for first-order-phase-locked-loop
with results of approximate analyses

Figure 5-1
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5.2. Discrete Phase-Locked Looe.

In the light of the foregoing discussions the discrete phase-locked loop repre

sentation may be taken directly from the steady state K-B, eq. 4.23)

*x i+1

where

::: '" 1xl' + (l+F) ei

e. ::: Sin (x. - xn - v Sin x* + v Cos x*
1 1 1 1. 2.

1 1

5.17)

, .'.....

_.

::: -Sinx* z + Cosx*z1. 2.
1 1

F ::: ~Jii' 5.18)
D.. q

F* 5.19):::
15:

In general, F may be interpreted as the number of sample points per loop

time constant. Preliminary exploratory runs have confirmed that F::: 10,

i. e., 10 points per loop time constant is adequate for roughly' 10 per cent

accuracy. Specifically it was found that the RMS discrepancy between

points run with F::: 10 and with F::: 30 for the same continuous noise

sample was less than 10 per cent (R::: 0.5 and R::: 1).
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6. THE NON-LINEAR THEORY

In this section we w ill describe the results of the general theory necessary to

understand our approach to phase estimator design. The details of the

theory can be found in Ref.1, while our general technique of sequential

determination of the conditional density via Bayes rule is described in Ref. 2

and Ref. 4. In particular Ref. 4, which forms Appendix II, treats a very

simple problem and consequently may be read to understand our digital

computator methods for the realization of sequential update for J (x) as
n

well as detailed derivations of the sequential update for J , or in
n

statistical parlance, Sequential Bayes Rule. For a general introduction to

the aims and methods of filtering the reader might do well to study Ref. 5.

In order to fully understand the results of the continuous time problem the

reader should familiarize himself with the Ito lemma, it is a fundamental tool,

which may be replaced by Taylor series arguments only at the risk of long

error-prone and devious calculations. We will illustrate this lemma by

deriving various results stated in the introduction.

Let J (x) denote the conditional density of phase cp given the observation
n n

z. • .• z. ,then it is easy to establish the following recursion relation
1 1
n -1 0 .

==

co

KJ
_00

e

Zl Cos x+ Z2 Sinx
n n

c
2(y-x)

e - 2B J (x) dx
n

6.1)

J (x) == the prior density of xo

co

K chosen so that J In+l (y) dY = 1.
-co

For a derivation of eqtn. 6.1), see Ref. 1 page 59, or in detail, see Appendix 1.

Notice that the model eqtn. 3.1) and 3.2) and the Gaussian assumptions have

been used to derive eqtn. 6.2).
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For many purposes, it is much easier to derive results in the continuous

problem, instead of from the sequential Bayes Rule given by eqtns. 6. 1)

and 6.2), in Section 3 it has been shown how Band C can be selected to

assure that the discrete data rate is equivalent to continuous observations.

Of course, the phase detection problem is inherently a continuous problem,

however, we consider the analogous discrete problem in order to have accurate

digital realization of the filter and also because some facets of the problem a.re

easier in this case. In order to state the continuous analog of eqtn. 6.1)

it is necessary to introduce the concept of random differential equations such

as

dx = f(x) dt + a(x) dS

This may be regarded as a more rigorous and tractable form of the equation

x = f(x) + a (x) • w(t)

6.4)

where

and

w(t) is a "white noise" process

t
S(t) =: f w(x) dx

o

we assume for simplicity x is scalar valued. Physically, eqtn. 6.4) can

be interpreted as the change in x in the time interval (t, t + dt) is a mean

drift f(x)dt and a diffusion a(x)dS with dS the corresponding increment

of a Brownian motion process, see Ref.l for details. One of the useful yet

disturbing properties for novice of these equations is the Ito Lemma: If

V (y, t) is a tw ice -continuous differentiable function then V (x , t) with x
t t

a solution, of eqtn. 6.4) is the solution to the equation

dV [
OV OV a

2
(x) o2vJ= - + f(x) - +-- -- dt + V a (x) dBot ox 2 oi x ' 6.5)

, 0'-,

Formula 6.5) is what one would expect, a direct generalization of the

Eulerian derivative except for the term

which arises as the squ:'lre of the diffusive tcrrfl) a(x) d$, is equivalent to 3.
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dy == ~d~

(32 2
is 2 - I' not 132 as the unintiated might expect. In particular, for the

problem which interests us, namely the model eqtns. 2.3) and 2.4), the

continuous conditional dens ity J(t, x) of the phase x satisfies

'-
2

dr ·f a 2(X) dt.1 t term, For example, the solution of

/\ /'-.. ~ ""~ 1 ,...
- g Cos, gSin - g Sin) - dl

2r

q 02J /"0. ~ 1 ...,
dJ(t,x) == 2" ox2 dt + (Cos x - Cos, Sinx - Sin) 2r dI J(t,x)

where dl is vector Innovation, defined by
..., /"\.

~ Idz1 - Cosdt
dI == N /'.

dz
2

- Sin dt

...,
The dI process is called the innovation and represents the instantaneous

new infonnation(1) carried by ctZ
i

at time t. The spectral, density of the

t dd ·t· t . . 12r a 1 (. ..vec or a lIve measuremen nOIse process v IS ~ a 2r ' 1. e., It IS a

2
white noise vector process). Equation 6.6) has drift 10 ~ dt reflecting

ox
mean movement of the phase process inducing a change in J, a model

following action and diffuses proportionately to a weighting of the new infor

mation. A derivation of eqtn. 6.6) using the vector form of the relation 6.5)

can be found in Ref. 1 , page 50.

From the Ito lemma, eq. 6.6), the conditional expectation -g of g(cp) can be

shown to be the solution of the equation

~ /'-.
...... q 0 p- ""dg == 2~dt+(gCos

ox

1. The information about x carried by dzit) for all t ~ t
1

not carried

by dzi(s) for all s ~ t2 , t2 < t1 •

- 6.3 -
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1

Of course eqtn. 6.7) follows from 6.6) by multiplying 6.6) by g(x) and

integrating both sides of the equation from -co to co, with the drift term

value a consequence of integration by parts. It follows in particular that for

g = Sinx or Cosx

q 1 IV

dS = - - S dt + _. k . dI
2 21' 1

.;. 9. C dt + ..!.. k
IV

de = • dI
2 21' 2

,.A.. /lA
where k

1 = SC - SC

~ 1\2
S - S

k
2 = ~ _~2

/\ /\1\
SC - SC

6.8)

6.9)

where
...............

= Sin x

~
Smx Cos x

etc.

6.1. Relation to the Phase-Locked Loop

As will be shown later the cyclic estimate, which minimizes the loss function

1 -·Cos E:, is defined by

x* =
A

-1 S
Tan -

'8'
6.10)

and the associated optimal loss is 1 - D where D2 = B-2 +'8'2. An

easy but worthwhile exercise involving the Ito lemma(2),as the generalized

vector form of 6.5) is known, is to derive the random differential equations

satisfied by D and x*; they are

dx*

dD ==

. ,...,

( )

1, • dI
- 9.2 D +.--!.-3 II w l1

2
dt +~-

4rD 2rD

2. See Rc£.l, theorem 2.2, page 21.
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with "e 1/ ::: 1

-
/\ A

where 1- ::: C.!5.2 + S !1
/' A

w ::: S.!5.z - C !1

.,1\. def~
with C = Cos x etc.

Suppose R is small and D reaches steady-state then it can be shown that

to first order in R
1, ::: 0

since both the drift and diffusion must vanish in steady state. From 6.12) k
1

and k
Z

must be parallel and

.!5.
1

= a Cos x* e

~Z = -a Sinx* e

for some as yet unknown a.

6.12)

6.13)

6.14)

But then

or

W :::

W :::

-aDe

2a :::

-RD2 e

and by 6.12) and 6.13)

(R)2D2 by 6.13)

Now e may be evaluated as (Sin x*, - Cos x*) since,when R is small,

the phase is Gaussian with mean x* and variance R. Hence our assertions

in Z. 8) are validated. When B -> 0 eqtn. 6.1) can be shown to have the

explicit solution;

J (x) :::
n

a Cos (x - 'f )n ne
2:n:l (a )

o n
6.15)

whence x* ::: 'f
n n

i'±' [" -I n-I ]
where

n
Zlr I Zl i I Z2 6.16)a e ::: +n

j=O n . 0 nJ=

and z1 ::: a Cos'±' Zz ::: a Sin'±'
0 0

,
o 0

0 0

with J (x)o

a Cos (x - '±' )
::: e 0 0

2rcL (a J
u u

1
0

::: the zeroth order Bessel function of imaginary argument.
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The continuous version of the estimate provided by 6.16) adapted to the case

where B is small

da ::: a a dt + fl dZ
l 6.17)

db ::: a b dt + fl dzZ

0 Tan-1 b
x ::: -a

and if B == 0, choose a ::: O. Again it is interesting to find the stochastic

differential equation satisfied by xO which is

dx° ::: flL (Sin(cp - x )dt + Cosx dv2 - Sinxo dv1)o 0

with L == (a2 + b2)1/ 2. We again emphasize that 6.18) is a

phase-lock loop but with a non-linear gain .@.. As we shall see the static

phase estimate which we call xO exhibits numerically good performance.

Notice that 6.17) and 6.18) show that the X
O estimate no matter what choice

of a and 13 is a phase-lock estimate with a data dependent gain, which can

be shown to agree with the general form of the optimal cyclic, when the

condition distribution of the signal given the observations is symetric about x*

p(x) ::: p(2x~' - x), an assumption which seems valid from our digital runs.

To conclude this section it should be emphasized that a study of the problem

where the phase is the output of a second order system can be accomplished

ea~ily along the same lines as we propose here.
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7. CYCLIC SOLUTIONS TO THE NON -LINEAR PI-LASE ESTIMATOR

The basic output of the non-linear phase filter is the conditional or a posteriori

probability density function of phase, J (x) where x denotes the phase and
n

J (x)dx is the probability based on all observations up to and including the nth
n

that the phase lies between x and x + dx. As originally derived x ranges

from - ex> to +00.

For phase tracking circuits in particular, however, two types of requirement

must be distinguished.

1) Absolute phase required as in CW cycle counting tracking systems,

e.g., MICROLOC, TRANSIT, ooVAP, UOOP, and many others.

2) Modular phase required. That is, the integral number of cycles is

not important, only the phase modulo 2rc, as in ~requency or phase

modulation discriminators or filters for estimating phase for

coherent detection.

For the present, we concentrate on the latter type of problem; this leads to a

class of cyclic estimates of the phase.

In general, after having tracked a noisy signal for some period of time the

phase density function J (x) exhibits a multi-modal nature with modes spaced
n

at intervals of roughly 2rc. An example is shown in Figure 7-1 \.,hich is the

non-linear filter a posteriori probability density after having tracked for 35

time constants of the optimized phase-locked loop and where the signal/noise

ratio in the optimized phase-locked loop bandwidth is zero db, i. e., about

4 to 6 db below what would normally be considered phase-locked loop threshold.

The phase density is the complete answer in the sense of Siegert's "Ideal Observer",

or Wald's Bayesian theory, i. e., it summarizes all the available information without

loss of information but it does not explicitly provide "the phase estimate", and as in'

all such problems this is somewhat arbitrary and depends on the definition
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of a loss function to be minimized. That is, if we associate a loss function

L(E:) with a given error of estimate then the expected loss given the a

posteriori density, if we estimate x*, is

co

E(LIx*) =' J J(x) L (x - x*) d.x
-co

and the optimum estimate relative to this loss function is that which minimizes

the expected loss, i. e., the solution

7.1)

oE(Llx*) = 0dX*
co

0 = J J(x) L'(x - x*) dx 7.2)
_co

The common "least-squares estimate" results from assigning a quadratic

loss function, i. e. ,

L(E:) = KE:
2

Then

L'(E:) = 2KE:

and the least-squares estimate is the solution of
co

o = 2K J (x - x*) J(x) d.x
-co

00

or since J J(x) dx = 1
_00

x* = J xJ(x) d.x
-co

which is to say just the mean or expectation of x.

This is a reasonable sort of estimate for densities which are unimodal but

obviously may result in somewhat ridiculous answers for a multimodal, quasi

periodic density such as Figure 7-1. !Tor example, in this case the least-squares

or mean value estimate may tend to fall midway between the two major modes

where the probability density is actually very low. By attempting to compromise

in this sense we would actually come up with a very poor estimate, one for which

the error, modulo 2r: is much lal'ger than tIle width of the individual rnodes.

- 7.2 -
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Clearly what is needed is a cyclic loss function, i. e., one for which

L(e) == L(e + n 211)

for all n. If the loss function is cyclic in this sense, then the total expected

loss becomes

co
E(L \x~') == J J(x) L(x - x*) dx

== I l J(x + n211) L(x) dx
-n:n==-co

11 ,.,
== J J(x) L(x) dx

-n:

where by definition

7.5)

7.6)

J(x) = I
n==-co

J(x + n2rr) 7.7}

, ,-

In effect we have thus taken the density J defined on the infinite line and by

wrapping it around the unit circle and adding the contribution from each wrap,.,
come up with a cyclic density function J completely defined by its values in

anyone principal 2n: interval and from which the expected loss for any cyclic

loss function can be computed. Note that for normalization

.rr,/V
f J(x)dx == 1
-rr

since J(x) is a density function.

Now we come to the question of choice of a loss function. Consider the cyclic

density as representing a mass density distribution around a unit circle as

shown in Figure 7-20 HOrl would we rationally estimate "the phase" x*. One

way that is attractive from several points of view is stick a pin through the

center of the circle and see what point hangs down under the attraction of

downward gravity) calling this the "center of mass on the circle" or the phase

estimate. Mathematically this is determined by setting the resultn.nt turning
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moment to zero or

re",
o == S J{x)Sin(x - x*) dx

-re

Note that this results from choosing a cyclic loss function

L(8) = 2(1 - Cos 8)

4S
. 2 e:

= m-2

as shown in Figure 7-3 for then

, L 1(8) = 2 Sin e:

leading to equation 7.9) for the minimum loss estimate. This is an attractive

loss function from several points of view, namely
2

1) In the vicinity of E: = 0 it is quadratic, i. e., L(e:) -> e:

2) It is symmetric and cyclic.

In order to solve equation 7.9) we can expand the Sin term

re;.,
o = S J{x)(Sin x Cos x* - Cos x Sin x*) dx

-re

7.9)

7.10)

7.11)

7.12)

or defining
.1\ reI\'
C == SJ(x) Cox(x) dx

-re
re .

'S' == S J(x) Sin(x) dx
-re

7.13)

7.14)

the conditional expected values of Cos(x) and Sin(x) respectively, the solution for

x* follows from
/' r.

0 = S Cos x* - C Sinx*

/'\

x* -1 S
7.15)== Tan -

B
It is of interest to consider the expected loss associated with this estimate,

which is the natural generalization from the variance in the case of the least

squares estimate.
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Thus

E(L \x*)
lt N::: J J(x) 2(1 - COS(X - X*» dx

-It

It

::: 2- 2J l(x)(CosxCosx*+SinxSinx*)dx
-It

A A
::: 2 - 2( C Cos x~' + S Sin x*)

7.16)

::: 2 _ 2 (22
+ _S2 )

,)<32 +82 ' Jc2 +5'2 '

::: 2(1 - Jez+8'ZI)

It is clear that €2 + g2 < 1 with equality only if all the density in J
is concentrated at one point.

7.1. Recursion Relation for the Cyclic Densit;y

One of the attractive features of the cyclic density is that it affords potential

significant simplification of the recursive computation of the density function

which comprises the bulk of the computational problem. In fact, we can derive
. ""'

a recursive algorithm for computing J directly without ever computing J.

Th~s proceeds as followso The recursion for J is

7.17)

Z
n

H(y)

where

co

::: KJ Qs(y-x)Qm(Zn-H(y»Jn(y)dY
_co

Q (t) is the probability density function of state change ts

Qm (t) is the probability density function of measurement

noise, t
. h th b .is ten 0 servatlOn ::: vector (21 , 22 )

n n
is the value of the snesor for phase y,

e.g., Sinyor Cosy

K is a normalization constant.

7.18)

For Gaussian state noise and measurement noise, Q
s

functions.
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Now let us form J from Jn+l n+l

m=-co

co

= I
m=-ex:>

Let u = y -m2rr

In+ 1(x+m2rr)

r Q (y - xm2rr) Q (z - H(y» J (y) dy
s m n n_ex:>

7.19)

7.20)

-co
Q (u - x) Q (z - H(u+m2rr» J (y) du

s m n n
7.21)

m= _00

But since the observation function H(y) is already itself a cyclic function

(5 in y, Cos y) of its argument, the m2rr has no effect in the argument of

H, consequently

7.22)

'i.~! where "'"J (u) ::
n J (u+m2rr)n

m= -co

7.23)

""Finally, since Q and J are both cyclic the integration range can be
m

reduced to the principal interval by defining in similar way

co

"" LQ (t) = Q (t+p2rr)s s
p=_co

then
,.., rr"..... ""
In+ 1(x) = K J Q (y - x) Q (z - H(y» J (y) dy -rr<x<rrs m n n-rr

,v

That is, In + 1 follows from a recursion of identical form to that for In +
1

.

In this case the normalizing constant K may be found from the condition

rr
J In+ 1(x)dx = 1
-rr
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What we have accomplished here is that J need only be computed on the

range - j( to j( rather than the much larger range representing the total

diffusion of probability density on the infinite line. This may represent a

substantial reduction of computations.

The program, D13, was originally written to compute density on the line

-co < x < co but subsequently rewritten as D14 to compute density as

above on the circle - n: < x < j( in order to achieve greater accuracy (finer

grid meshing) for large R. Both programs are described in AppendiX III.

- 7.7 -



·.......

•.......

co
C\J

r, ~
L::
L::
.....J

-) C'-

Q
'_ C)- ., .......

"
~l~

'-./ LO

-) 00

0- ·
- C)

·C)

•o

·C)

FIGURE 7-1

Conditional Probability Density
Plot - 350th Time Point



-2n

FIGURE 7-2
CYCLIC DENSITY ON THE UNIT CIRCLE

. I --.----------"--'1-"-/-
o 2n

FIGURE 7-3

CYCLIC LOSS Fm~CTION L(s) = 2(1-cos 8)

7.9





-
8. FOUIUER SERIES EXPANSION OF THE CYCLIC DENSITY

The periodicity of j(x) suggests the possibility of representation in Fourier
;IV

series. The Fourier coefficients themselves in place of the J(x) function

afford attractive possibilities for simpler computation if convergence can be

established and a direct recursion relation between the Fourier series is

established.

Define Fk as the complex Fourier series coefficient of order k in the
- ,..,

.expansion of J(x)

11:"" ikx.
Fk == J J(x) e dx

-11:

Then

8.1)

".,

J(y)

co

== 1-)
211: LJ

p==_CD

-ipY'
F ep 8.2)

,.,
Now J(x) has been shown to follow the recursion

;v 11:_ ....,

Jn+l (x) == K J Qs (y - x) Qm (Zn - H(y» In(y) dy
-11:

""'"Using similar expansions for Q and Q defines m

St :: f Qs(x) e
itx

dx
-11:

8.3)

8.4)

so

<Xl

== -12:B fCD

Bt
2

--2-
== e

2
x .- -- + Itx
2B de x
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co

== Z~ I
t== -co

""Q (y -x)s

Bt
2

- 2 -it(y -x)
e e 8.6)

8.7)

Qm is available by writing

(zl - Cos y)2 + (zZ - Sin y)2

2C1
== -- e

JZrrC'

A similar expansion for

. Q (Z - H(y»
m

zl Cosy + z2 Sin y

C

where 1

J2rrC I

8.8)

or defining

i'Yve

zl == vCos'Y

Zz = vSin'Y

so

Q (Z - H(y»
m

v
C Cos ('±' - y)

== K1 e

co

Qm(Z-H(y» == K1 I
r==-co

I (Y..) eir('Y -y)
r C 8.9)

The latter following from, e.g., Ref. 19, #9.6.34.
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Then using 8.1),8.2),8.6), and 8.9) in 8.3)

KK
1

co co corr rr

~ I ~F =
(2rr)2

f fkn + l -rr-rr p= _co t= -co r=-co

(footnote 1)

The x integral gives 2rr 0 (t+k) so

gives
Bt2"

--2- -it{y -x)I (v) ir('¥-y)
e e - er C

-ipy ikx
Fee dy dx

Pn

co co

~ ~
p=_co r=-co

Bk2

F e - -2- ei(ky+r'f - ry PY) I (~) dy
pre
n

p=-co

.Then the y integral gives 2rr 6 (-r -p+k) so

Bk2

F e - -2- ei(k - p)'f I (~)
~ k-p C

Bk2
co

= (KK
1

) e - -2- ~

p=_co
8.10)

The normalization constants may be evaluated by simply noting that the zero

order coefficient is just the total probability integral

rr IV

F = f In(x) dx
0 n -rr

= 1

or

co

(KK1) ~ F -ip'i' v
8.111 = e Ip (C)

Pn
p= -co

Note that the cyclic phase estimate defined previously

-1/'./"\
x* = Tan (SIC)

1. Ik denotes (Fk ~ ,i. e., the nth discrete time point of the k th order
n

Fourier coefficient.
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is given simply in terms of these complex Fourier coefficients since

1l

J(X) e
ix

dxF 1 == J
-1l

A A

== C + is

by their definitions, so

Also note that 8.10) can be simplified if desired by using the symmetry

relations, the first arising from the fact that J(x) is a real function

8.12}

so

F p

I (x)
v

(* == complex conjugate)

\Bk2 ~

== (K
3
) e - -2- e ik 1f' [I

k
(~) + 27&.I

p==l

F e -ip 1f' I ( cV)J
Pn k-p

8.13}

~ -1
where K

3
== [I (.Y) + 2~> F e -ip1f' I (.Y) ]

o c :....J Pn P C
p==1

8.1 Difference Equation Form

Equation 8.10) provides a closed solution to the problem of a discrete update

for the Fourier series.

In this form it is not immediately clear how this approaches the continuous

case as 6. -> O. What we need is the difference equation corres ponding to

eq. 8.13) in this limiting case. This can) in principal) and has,in fact, been

worked out by a careful Taylor's series eX[Jansion.
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A much more direct route ,however, lies in tehe simple application of

eq. 6.7) which states that, for the problem at hand and given any functional

g(x), the conditional expectation of g satisfies the differential equation given

in eq. 6.5)

-0 ~ M'......T ....

dg
q o g dt + ...!-

gCosx - g Cosx dl
l

== "2 -0 ""/'....
8.14)

ox2 2r -g mx - g Sinx dlZ

.., "" ~where dl
l

== dZ
l

- Cos x dt
,... ..., <'-

dlZ
== dz

Z
-Smxdt

Notice that since this is linear in g it applies ~for complex as well as real
!::1. tv IV

g. and if we define the complex innovation I == II + liZ this can be written

<2' 1 &~ /":'J N)A qog .,j(').',/-ix '" -lX -
dg == "2 ox'i dt + Zr ru;Lge - g e dl

for real g or

·~.==__t_:_:_~_d_t_+_-4~_t_[._~_e_-_ix g_0_-1_'X_J_d_f__+_[_0_e_ix_-_~_1'_'X_J_d_i_*_}--J 8.15

where I ==

Applied to the case at hand, let

so that

ikx
e

Then

== (per defining eq. 8.1».
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In particular the first order coefficient is given by

=

This will be found to lead to an easy circuit mechanization of the optimal

non-linear filter.

Separating 8.16) into its real and imaginary parts denoting

8.17)

dCk = q~2 Ckdt + 4~ «Ck -1 + Ck+l- 2CkC1)di1 + <-Sk -1 + Sk+l - 2CkS1)dI2} 8.18:

dSk = qk
2

S dt + 4~ t<Sk -1 + Sk+1 - 2SkS1) dI1 +(Ck -1- Ck+l - 2SkS1) di2} 8.19

~
where Ck = Cos kx

~
Sk = Sinkx

By the appropriate trig identities this can easily be shown identical to the form

in eqs. 6.8) and 6.9).

These differential equations for the Fourier Coefficients are attractive from

th~ point of view of medianization in a simple real-time tracking circuit as

will be shown later. The crucial question, however, is can a reasonable

number of terms of the form Fk , eq. 8.16), yield adequate accuracy and

we have not had time to answer this question in the present study.
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9. COMPUTING DETAILS

9.1. Determining M and F

As the reader may see from the Basic Language Program of Appendix 2 and

the later portions of this section the conditional density is computed by

representing it as a set of (2M + 1) point masses. A natural question

arises as to the choice of M in relation to the statistical parameters

F ::: 4' and R::: ~. In Section 2, we have indicated that F should

be fixed at about 10 or more in order for the discrete simulation of the phase

lock loop to have a sufficiently fast data rate in order that its performance

very closely approximate that of the phase-lock loop. Later in this section we

will indicate further experiments which justify this choice of F. Returning

now to the problem of selecting M for fixed F, it is clear 0at too small

an M will produce inacurate determination of the conditional distribution

and hence effect the quality of the optimal estimate. We determined M

experimentally by running our simulation of the non-linear filter with larger

and larger M on the same random sequence and selecting that M so that

the optimal estimates(l) produced by our program with M agreed ~o fouro
places with those produced when M::: 2M

o
. Using this procedure it was

found that M::: 56 sufficed fOl" R < 1, while M::: 112 was necessary for

R == i. These M's were determined for the program which realized the

density on the line, however, it is clear that these M suffice also for the

intrinsically more accurate program realizing the density on the circle.

Now, in Section 3, F was determined by noting that the extended Kalman-Bucy

is the phase-lock loop and requiring the pseudo-steady-state performance

(i. e., the steady-state solution of the riccati equation, not the true error

performance, since the model is not linear) of the discrete loop simulated by

1. The estimates are more sensitive to M than other parameters of the

conditional dens ity, for example, its second-order moment.
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the digital computer to be close to the pseudo-steady··state performance

of the continuous time phase-lock loop. Because of this formal argument,

a further check seemed to be necessary. This check was provided by

considering two phase-lock loops

Al Al 1 [ . Al 2 Al 1 . All ~.1)A CPn+l
:: CPn + l+F Sm(cp -cP )+v Coscp - v Smcpn n n n n . n_

.'--+-- '~_.'-'~""-~

n::l,2,3, •••

and
/\3 ...... 3 1 [ ...... 3 .. 2 1\3 '·1 . 1\1 ] 9.2)B CPn+3

:: CPn + I+F Sin (cp - cp ) + v Cos cp - v Sm cpn n n n n n

n :: 3,6,9, ••.

i i i
.. i v +v + v 2

with
n n-l n-

v ::
3n

Loop A receives data every b.. seconds while loop B receives data every 3b..

seconds and they are both approximations to the continuous loop (see Section 3),

;i:,~'

" rq'. A 2 AI. Adcp :: .Jji (Sm (cp - cp) dt + dv Cos cp - dv S1l1CP)

Of course, A performs closer to the performance of eq. 5.4) than Band

as b.. --> 0 both A and B approach the error performance of 5.4). Our second

and more accurate determination of the appropriate F then consists in

comparison of 'Q3
2

with ~31 • This was done and the choice of F as
n n Al A2

about 10 sufficed to produce agreement between cp and cp estimates which

insures the accurate simulation by a discrete system of the phase-lock loop.

9.2. Monte Carlo Analysis

In order to compare the error performance of OIle non-linear filter with another it

becomes necessary to evaluate the performance statistically by a Monte Carlo

analysis. We decided to rUIl both the non-linear and phase-lock loops for

500 time steps; 40 different times to find. the mean-square errors of the

various estimators, phase-lock loop, static-phase filter, and the optimal

cyclic estimate at R increases towards 1, the expected time to slip decreases,

and our simulaticn was, in fact, checked again these mean-slip times, see Ref.6,

of the phase"lock loop.

- 9.2 -
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On each run of length N time steps the error variance was calculated as

N
2 1 \' 2

S == N L (E) •

i= 1

The distribution of S2 is then X
2 with a reduced member of degrees of

freedom dependent on the sampling rate parameter F. It can be shown that

the effective number of degrees of freedom is

Neff =
N

2F
2

1 + 1 + 2F

N
-+

F
for large F.

Then the sample variance is that of X
2

with Neff degrees of freedom or

standard deviation

o 2
s

.0324

.205

Averaging over 40 such independent runs.> for a pooled estimate gives a

further J4"O reduction for

0_2s
-2 =
S

That is, the overall error variance estimat8s are expected to have sampling

errors of about 3%.
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The results summarized in Section 10 for the phase-19ck loop agree very

well with those predicted by Viterbi in Ref. 6 except at R =1. This exceptional

case can be explained by our rule for slipping. The reader can examine our

program with a detailed description in the next section.
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10. SIMULATION RESULTS

10.1 Details of a Typical Run

Figure 10-1a,b,c, shows a plot of the phase-lock loop error and of the cyclic

non-linear estimate, x* ::: atn(S/C) for a typical 500 point run. This was

for the case R::: 1 (signal/noise ratio parameter) or about 6 db below what

is normally considered phase-lock threshold and F::: 10 (sample points per

optimal phase-lock time constant). Overall statistics computed for this run

were

::: mean-square modulo 2:n: phase-lock error
2::: 1. 22 rad

::: mean-square modulo 2:rr cyclic non-linear error

::: 1. 62 rad2

which is typical of the relative performance of the two estimators. It is to be

pointed out that we have here evaluated the performance in terms of mean-square

error criterion while the non-linear loop was actually optimized on the

L(e) ::: 2(1 -Cos e) criterion. Some comparisons of the two computed criteria

indicated that there was no significant difference between the errors and even

less difference in the relative performance of the phase-lock and non-linear

estimate as between the two error criteria.

Several interesting points emerge from a close inspection of the error plots

of Figure 10-1. In the beginning for about the first 70 Points or 7 time constants

the phase-lock and non-linear estimates agree very closely. At about this time

the non-linear loop skips a cycle and at about point 90 has restabilized about

a point one cycle lower. The phase-lock loop is also skipping a cycle at about

this time (in the opposite direction) but takes considerably longer to restabilize.

This has been seen to be a typical point of difference bet\veen the t\vo loops,

namely, that when the non-linear estimator skips a cycle it tends to restabilize

more rapidly. This is a natural consequence of the adaptive feature inherent

in the no;:-liaear estimator; it has the cap2.l:lility of recog,lizing when it is i11

- 10.1 _.
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an ambiguous situation and at such times tends to quickly discard old information

and be more rapicUy receptive to the new. Recognizing that cycle slips are going

to be incvitible for any phase estimator at sufficiently low signal/noise ratio, it

is desirable that the transient occur as rapidly as possible in order to minimize

the low frequency content of the resulting step. The high frequency components

will be largely rejected by any subsequent data filter.

After about point 150 the two estimates again assume a very nearly parallel

trajectory, separated by two cycles. The fact that the non -linear estimate

then settles around the zero cycle error line can only be regarded as fortuitous.

Over the entire length of record (45 time constants) the phase-lock suffers

three slips and the non-linear two. Although the statistics at this point are

inadequate to prove the point this also appears to be typical relative behaviour.

As apoint of reference it may be noted that for R == 1, Viterbi (Ref. 6) predicts

mean-time between slips for the phase-lock loop theoretically' as 7 time con

stants while Tausworth (Ref. 23) finds experimentally, 16 time constants,

compared to 15 here.

In order to provide some further insight into the behaviour of the non-linear

estimator around slip times, Figures 10-2 - 10-9 show the transitions in the

shape of the computed a posteriori or conditional probability density J{x)

around the time of first slip from point 70 to point 105. At 70, the density

is a well-behaved unimodal, approximately Gaussian shape. Beginning at

point 80 a secondary mode begins to appear at one cycle below the true value.

By 95 the lower mode has captured most of the mass and the estimate shifts

to this lower value. Eventually, at point 200, Figure 10-10, the mass finally

recoalesces into a single predominant mode. However, as a worst case for

this run, Figure 10-11 (point 350) shows a case where there are 4 discernable

modes.

It should be pointed out that tile means of resolving cycle ambiguities is by no

means optimized in the present implementation.' What is clone in the present

program is simply to enforce maximum phase continuity by choosing the additive

integn"l cycles £01:: ectch e.'otinlcltc so CtS to ensure that tbc difference from the

- 10.2 -
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last previous estimate is less than 1/2 cycle. This was motivated partly by

the consideration that our emphasis was Oil cyclic loss functions (1 - Cos 8) for

which full cycle errors are irrelevant and partly by the consideration of working

toward estimates which only computed the cyclic density function (on the circle)

in which case the multimodal density information such as Figures 10-2 - 10-11 is

not available to the estimator. The question of optimal usage of the multimodal

density information to resolve cyclic ambiguities is as yet open.

10.2 Monte Carlo Results

The principal simulation results consist of a series of 40 runs each of length

500 points, all at F = 10 (points per PLL time constant) and at R = 1.0, .75,

.5, and. 25 (linear PLL noise/signal ratio). The results of these individual

runs are given in Tables 10.1 - 10.4 along with the cumulative statistics. The

cumulative results are plotted in Figure 10-12 along with Viterbits exact

theoretical result for the first-order PLL. The theoretical sampling error

in these runs is ± .14 db (see Section 9.2) except for the case R = 1 for

Which only 20 runs were available and the sampling error is ± .18 db. The

PLL results are reasonably close to Viterbits result but with an apparently

significant bias of about - 0.2 db which .is just the expect~d effect due to the

use of finite F = 10, see eqtn. 4.17). The cyclic non-linear estimate appears

consistently some 0.6 to 0.7 db better than the phase-locked loop. In view of

the fact that we can probably regard the linear model as an ideal lower bound

throughout this range of R, this improvement is considered significant; it

reflects only about half as much "excess" error (relative to the linear ideal)

as the phase-locked loop.
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M=56
R=1.0
F=10.

RUN MEAN-SQUARE MODULO 2Tt. ERROR
CYCLIC PHASE LOCKED

1.75
2 2

1 rad 2.64 rad
2 1.14 .95
3 1.02 1.47
4 .93 1.16
5 .84 .93
6 1.75 1.24
1 2.01 2.37
8 .92 1.02
9 1.57 2.53

10 .78 1.17
11 .99 1.02
12 1.29 1.12
13 1. 92 1.59
14 .96 1.20
15 .81 .93
16 2.14 3.19
17 1.46 1.25
18 1.11 1. 36- 19 1.21 1.26
20 3.20 3.87

RESULTS OF INDIVIDUAL RUNS

"~'
TABI,E 10-1

lO.3a



M=56
R=.75
F=10.

'l~

RUN MEAN-SQUARE MODULO 27f ERROR
CYCLIC PHASE LOCKED

2 2
1 1.46 rad 1.35 rad
2 1.09 1.10
3 1.19 1.27
4 .77 .93
5 .62 .84
6 1.22 1.09
7 1.80 2.27
8 1.03 , .28
9 - 1.81 2.30

10 .83 1.07
11 1.01 1.21
12 .86 .90
13 .89 .83
14 .84 .97
15 .51 .63
16 1.43 1.74
17 1.00 .82
18 .67 .79
19 .94 1.01
20 3.58 3.58c_
21 .97 1.09
22 1-.• 48 1.91
23 .64 .72
24 .81 .87
25 .90 1.34
26 1.02 .89
27 1.70 2.02
28 .70 .73
29 .86 1.03
30 1.79 2.02
31 1.05 1.15
32 1.30 1.48
33 1.06 1.63
34 1.04 1.46
35 1.16 1.77
36 .95 .68
37 1.68 1.70
38 .55 1.32
39 .90 .95
40 .70 1.03

TABLE 10-2

RESULTS OF INDIVIDUAL RUNS

10.3b



M=56
R=.50- P';'10.

RUN MEAN -SQUARE MODULO 2IT ERROR
CYCLIC PHASE LOCKED

1 099
2 ..,~ d2

rad • I , ra

2 ./6 ,.57
3 1.09 1.02
4 .55 .59
5 .40 .43
6 .84 .92
7 .77 1.72
8 _ .49 .56
9 .59 .• 59

10 r-' .60.J!.

11 .41 .64
12 .52 .53
13 .44 .41
14 .56 .85
15 .30 .47
16 1.09 1.25
17 .47 .51
18 .45 .53
19 .52 .52
20 .78 .75- 21 .59 .76
22 .70 .70
23 .37 .39
24 .60 .65
25 .45 .56
26 .76 .82
';.7 .93 .98
28 .45 .45
29 .55 .63
30 .93 .97
31 .67 .73
32 .87 .98
33 .56 .64
34 .49 .31
35 .68 .81
36 .52 .51
37 .94 1.31
38 .46 .51

RESULTS OF INDIVIDUAL RUNS

'I'I\BLE 10-3

10.3c



M=56
R=.25

"i~

F=10.

RUN MEAN -SQUARE MODULO 2TI ERROR
CYCLIC PHASE LOCKED

1 ,40 rad
2 2.50 rad

2 .25 .24
3 .41 .44
4 .23 .24
5 .20 .20
6 .29 .34
7 _ .32 .30
8 .27 .27
q .27 .26

10 .21 .23
11 .21 .24
12 .26 .25
13 .19 .18
J.4 .24 .26
--
15 .16 .18
16 .39 .42
17 .18 .20
18 .25 .25,- 19 .26 .28
20 .27 .26
21 .27 .30
22 .29 .29
23 .18 .18
24 .34 .35
.25 .25 .27
26 .22 .22
27 .37 .42
28 .22 .22
29 .27 .29
30 .36 .37
31 .36 .38... ,.. .28 .29.:>"

33 .25 .28
34 .22 .23
35 .34 .38
36 .16 .15
37 .44 .50
~8 .22 .23
39 .32 .33
40 .22 .23

TABLE 10-4

RESULTS OF INDIVIDUAL RUNS

10.3d
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10.3. Significance of the Phase Noise Results

In view of the small db difference between the tvva it appears necessary to give

some consideration at this point to the overall significance of these results.

What we have computed here is just the phase estimate error or noise, i. e. ,

just one-half of the total signal/noise question. Since the maximum possible

phase noise is that of a uniform distribution of :i/3 :: +5.1 db (rad) and

the phase-lock loop performs reasonably close to the linear ideal the maximum

conceivable improvement in phase noise is limited.

What about signal? In the retrospective light of these results it is clear that

here is where the major difference between various phase estimators must

show up and indeed there is room for very considerable differences in this

respect. It has to be recognized that signal output is also a function of

signal/noise input. This is the phenomenon of signal suppression.

How do we measure the "signal" component of signal/noise output. Since this

is most certainly a non-linear function of the phase signal (i. e., phase modulation)

input it must be defined on an incremental basis, also it is clearly a function

of frequency. For fixed signal and noise statistics then we can define the "spot

signal suppression factor" (analogously to the spot noise figure) following con

ventional usage as the ratio of the coherent component of phase signal out (radians)

at frequency f to the corresponding phase signal input for a small increment of

phase modulation at f. This can be measured as shown in Figure 10-13. Here

a small increment, 6, of phase modulating signal is introduced at frequency fl.

The corresponding coherent component of the output phase estimate is detected

coherently with respect to the input)averaged}and normalized to yield the ratio, S,

of the increment of coherent output to input. This signal suppression factor S

is in general less than unity (see Middleton, Ref. 24, Ch.I9) and only approaches

. unity at high input single/noise ratios (small R).

Note that this is quite a general definition of signal suppression, applicahle

to any sort of stochastic black box phase estimator.
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It is suggested, though the concept has yet to be fully explored, that an equivalent

measure of the spot signal suppression factor is afforded in the general case

of experiments such as we have run by computing the input spectral density

and the input-output cross spectral density

and forming the ratio such as

IGxx*(f) I
S(f) == G:ur

xx

Unfortunately due to computing difficulties in the last two months of the contract

there has been no opportunity to test this concept.

It also appears probable that this factor can be related to the information rate

of the systems viewed as channels and in turn to theoretical closed forms for

the output signal/noise ratio for the general non-linear filter •
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11. IMPLEMENTATION

Consider that we have available the various F
k

as complex modulation

f · . f . ikwt d h . h functiOns on carner requenCIes e an t e measurement m t e orm

zeiwt • - Then notice that by multiplying both sides of eq.l1.1) by e iwt

where w is a carrier frequency high with respect to g,~2 , we can transform

eq. 11.1) into

dFk ikWt
Cite

In overall form this corresponds to the solution for a first-order (single pole

pair) bandpass filter at center frequency w, having bandwidth q;2 •

Straightforward implementation of this relation appears as in Figure 11-1.

oniy the k
th

branch is shown completely for ease of presentation. Tracing

through the various signals it can be confirmed that this circuit does indeed

implement eqtn. 11. 2).

The current value of Fk is assumed stored in the first or cou:puting Band-Pass

Filter on a carrier frequency of kw. This is mixed with F1e1wt in a double

side-band (suppressed carrier) modulator. The resulting lower and upper

side-bands are, respectively, the terms

F *F i(k -l)wt
1 ke

F F i(k+l)wt
1 ke

- 11.1 -
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8 Denotes a linear subtractor

® Denotes a mixer

Ze
iwt (Z - F ) e iwt

1

BPF

w = wo 1
Q - g
}-J - 2

•

•

•
• •

BPF
w =kwo

(F -F*F) i(k-l)wt
k-1 1 k e

BPF

w =(k-1) F F ei(k-l}wt
o lk

* .k-11~(l--::::""---l
(Fk_l-FlFk ) (Z-F l }e

1

BPF i(k- ) wt

w =(k-l)w
k_le

o 2
~_ q (k-l)

- 2

-'E:keikwt

2~
BPF ikwt

Wo = ~w e

~
~= S1ls.:

2
-

DSB
- MOD.

BPF
w =(k+l)w

~ 0

s= g(k+l)2
2

i(k+ )wt
k+l

e

(F -F F ) e i (k+I) wt
k+1 1 k

• •

•.. •

•

FIGURE 11-1

IMPLEMENTATION #1

1l.la
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These are subtracted (linearly) from the Fk -1 and Fk + 1 terms to give

the terms

(F _ F*F ) i(k -1) wt
k-l 1 k C

(F
k

+
1

-F
1

F
k
)ei(k+l)wt

Finally these are mixed with (zl - C1)e
iwt

choosing in both cases the kw

sidebands which are then added to give

ikwt [( *)() (F F)(:1< F*)] ikwteke - Fk - 1 ~ F1Fk Z - F1 + k+l - IFk z' - 1 e

The fraction 2~ of this is the driving term which feeds back to the computing

bandpass filter.

This mechanization can be considerably simplified by combining linear operations.

The final two filters are clearly redundant of the first or "computing filter" •

Also the first two filters and the double second multipliers can be seen to be

redundant so that the k
th

branch reduces to the form shown on Figures 11-2a

and 11-2b. It is to be emphasized that the multipliers or mixers denoted (3) in

these diagrams must all be linear with respect to each of their inputs, and the

carrier must be reasonably well suppressed in the first multiplier. These

requirements can all be met with balanced square-law-type multipliers.

Th~ more or less complete implementation including F 0(=1), Fl' F2' and F 3

stages are shown in Figure 11-3. The output is directly Fl'

Note that this mechanization may be considered as a series of harmonic phase

locked loops, each aiding its adjacent neighbors in a particular way as shown.
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12. CONCLUSIONS

1. The Bayes sequential non-linear phase estimator has been shown by

simulation to provide an improved phase estimator relative to the

Phase-Locked Loop.

2. The improvement has only been measured in terms of noise output

and in these terms the improvement is about 0.6 to O. 7 db relative to

maximum conceivable improvement of 2.2 db. Expressed in another

way, excess noise relative to the ideal is about 1/3 less in db than that

of the phase-locked loop.

3. A means for measuring the signal suppression factor in hardware

experiments or simulation has been devised but there has not been time

in the present contract to explore this avenue. This is unfortunate be

cause it is clear that only in this respect could a significant difference
,

between various phase estimators, i. e., more than about 2 db possibly

exist (see discussion, Section 10.3).

4. The optimization herein was on the basis of a cyclic loss function 2(1 - Cos 8).

The means for resolving cyclic ambiguities was somewhat arbitrarily

chosen as minimizing the change between successive phase estimates in

terms of the cyclic ambiguity. The question of optimum resolution (If

the cyclic ambiguity for problems such as doppler tracking where the

proper resolution is important, is as yet open.

5. Several different potential realizations of the optimal non-linear filter

have been developed. Of these the most attractive for real hardware

mechanization is that be'1sed on the Fourier series representation of the

cyclic density function (see Section ll). This may be envisioned as a

series of harmonic phase-locked loops, aiding each other in a particular

way as shown.

- 12.1 -
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6. Within the limitations of the study the overall results are considered

highly encouraging. However, these limitations are significant and more

work along these lines is strongly recommended. In particular, questions

to be answered include

• Include in the simulation means for determination of signal

suppression and comparison with phase-locked loop in this respect.

• Proceed to study of the second-order problem and comparison with

second-order PLL

Digital simulation of the two forms (update and increments) of the

Fourier coefficients of the conditional density function and comparison

with present form.

• Derive optimal resolution of cyclic ambiguity for doppler tracking

problem.

• Conditional on the above simulation results, proceed to hardware

implementation and test of the differential Fourier form of the

oprimal non-linear filter.
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APPENDIX 1

SEQUENTiAL BAYES ESTINIATION

This appendix is written to serve as a very basic introduction to Bayes

sequential estimation or optimal non-linear filtering as used herein. For

this purpose consider a scalar observation and state and first-order

dynamics.

Assume that the state dynamics, i. e., the model for the information process

are known to be of the first-order form

= x. +u.
1 1

Al.I}

where u. is a zero mean, serially uncorrelated random
1

deviate having probability density G(u}.

The observations are G taken to be some non -linear function of the state

-'
plus additive measurement noise

AI.2}

where v. is zero mean, serially uncorrelated, independent
1

of u. and has probability density N(v}
1

Let us start an induction process by assuming that we know the conditional

probability density P.I' l(x} of x given all the measurements up through
1 1-

the (i-I)th. That is

p(x·l z . l' z· , •.• zI)dx = Prob(x.<x<x.+dx) given z. l' z. 2'·'· zl
1 1- 1-2 1 1 1- 1-

= "one-step predictor density".

Then given the observation zi straightforward successive applications of

the rules of conditional probability (Bayes rule) lead to

-Al.I-



- p(x.' z., ... ) ='
1 1

==

==

p(X., Z., ••• )
1 1

p(Z., ... )
1

P( z. X., z. 1' ... ) p(x., z. 1' ... )
1 1 1- 1 1-

p( Z·IX., z. 1' ... ) p(X·1 z. 1' ... ) [ P(ti - 1'· .).) ]
1 1 1- . 1 1- P Zi' •••

p( Z. \X., z. 1'.") p(x. \ z. 1' ... )
1 1 1- 1 1-

p(Z.\ Z. 1".')1 1-

Now consider the three terms on the right-hand side

1) p( Z.lX., z. 1' ••. ). Since z. as given by AI. 2)
1 1 1- 1

Xi vi' and since viis independent of

have

is only a function of

v. l' v. 2".. we1- 1-

p( z.\X., z. 1" .. ) ==
1 1 1-

-'

p( z.\x.)
1 1

== N( Zi - f(xi»
2) p(x.' z. l' z. 2' ... ). This is available as the a priori density with

1 1- 1-

which we started

3) p( z.\ z. l'1 1-

Thus

z. 2' ..• ). Since this is not a function of X it may be regarded
1-

simply as a normalization constant, K, required to bring the

total probability back to unity.

p(x. t z., z. 1' ... ) ==1J 1 1-
K N( z. - f(x.» p(x·1 z. ]' z. 2' ••• ) ]1 1 1 1- . 1-

"filter density"

Thus the one-step predictor density is updated to the "filter density" by simply

multiplying by the N density function of argument z. - f(x.).
. 1 1

To complete the iteration cycle we must then update the filter density to the

prediction density at the next step. To do this note that

f p(x·..L.l' x. \ Z.) z. 1' ... ) dx.b 1 1 1- 1

== Jrp(x. '1lx.) z .• 7.. ·1 •.•• ) P(x. 1

1
z., ... ) ::lx.

11' 1 1" 1- - 1 1 1
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but by equation Al.l, x. 1 depends only on x. and v. which is independent;

1+ • 1 1

the first term in the integral is thus just the density function G of argument

xi+1- xi or

p(x. 11 z., z. 1"") = JG(x·+I - x.)· P(x./ z., z. 1"") dx.1+ 1 1- 1 1 1 1 1- 1

This completes the iteration and we are ready to start another cycle in the

same way.

If G and N are Gaussian density functions with zero mean and variances

respectively Band C then, and defining for simplicity

p./.(x) =
1 1

p./. I(x) =1 1-

p(x Izi' zi-1' ... )

= conditional density of x
: th

through the i

p(x J zi-l"")

= conditional dens ity of x

through the i-Ith .

Then the iteration is

based on all measurements

based on all measurements

given p./" 1(x)1 1-

. 2

Pi/i(x) K1 exp [ -
(zi - f(x»

] Pili -1 (x)= 2C

2

K2 J exp [-
(x -y) ]

Pi+I/i(x) = 2B Pi/i(y ) d y

These are the principal equations used for the non-linear filter in this report.

The extension to vector observations is relatively simple and in the Gaussian

case results simply in the substitution of the appropriate quadratic form in

the observational residuals in the argument of the N density function.
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APPENDIX 2

The Journ::li of tl13 t\s~"o:'211tic,,1 Sci2'lC~S Vol. XV! I, No.2, ri". [:,)-~4, Sept.-Oct., 1939

R. S. Bncy2

1.0 Introduction

Even though the theory of optimal non-linear filtering is thcordically fairly well
understood today (sec [1] for a d0scription of the thwry and relev2nt references), the

attendmt problem of synthesis of non-linear filters is 2lmost untouched. Since one of
the unsettling features of the non-Iin-:ar theory is an almost total non-existence of

. examples, it is clear that the synthesis problem is not only practic2Ily rclev2nt, but also
theorecticz!ly relevant for the problem of asymptotic behavior. The forthcoming thesis
of La (sec [3]) will provide some closed form rcsolutions for non-linear filters,
however.

In this p:pcr, ViC will describe our results on the synthesis of a one-dimension
discrete time, non-line~r filters. In the discrete cc.se, it has been pointed out by many
investigators in control ([2J, [3J and [4]), non-linear filtering b~sica!ly consists of it

sequenci'11 appFcatlon of D3yes' rule. Of course, this ie};:a is well knov,'D in the
statistic:-:l literature (s~e in pc.rticuhr [6]). We hav~ chosen the discrete time case in
order to avoid the well-known dnCfr.Tl1a arisin::; in the sirnu12tion of a diffusion proe;.::ss
and the relevant stoch~!stic integr8]s. The mechanics of the realization v,'e describe are

not limited to the one-c1inicnsiold sitt:ation, but for reasons of simplicity of
description in the section dealing with the time-sh3ring basic program and numerical
results, we will confine ourselves to this one-dimensional casco

IThis res::?rch W?S sllpport~d in p:<rt by the Unitd St<~tcs Air Force Office of A~rosp~cc
Re5~arch)Ari)!i.::C 1,~:l.t11CIi1'i tic:) Diyi~i'JH, lmcJcI Grants No. f ..J;~Jl.FOSR 12.::;-4--67 II. ,~lld !~F-AFOSr~

1241t-67B. rlf:~n~~scrilJt St:o~n~q·~d J~nc 1969.
2Unh·,:rsity (If SQut!:crn C?1:fO~!li1, L')$ AnZ21~s, CaEfornb and Electrac Inc., Anaheim,

C?lifomb.
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TIle pZlp::r will be civ:dccl into three p:lrts; the thst being a description of the sigl121

and noise processes and the sensor, the sC'cond a revic-d of the sequent:,,1 formulae for
the conditiord distributions of the signal given the observations derived via Bayes'
rule, a description of our synthesis method and a Br-isic Progr~!11 as well as a

cOl11i':nisoll of our results to the pc:rforrnance of a linearized filter.

2.0 Modeling

In general, bold-face, 1000':er-case latin letters denote vectors, while lower-cnsc, latin
letters denote scalars. The signal process \ xn~ _ 1 is a discrete time index set of« )n - to •• m..
n-vector valued random variables and satisfies

(1.0)
"0 c

with? a function from Rn to R'l and a a function from Rn to n x r m8trices, with

a'a invertible.
The ~tochastic process ~Iln~n =1, ... m... is a set of independent and identically

distributed r-vector valued random variables with density g (1l1- \'/hile c is an n-vector
valued random nubble independent of the lIn processes and having density He). Now
the observation process \zl!~ _ is an s-vcctor valued process re18ted to theI In -.1, ••. m...
signal process as .

(1.1 )

with h a function from Rn to RS and I 'In I a set of independent and identically
distributed s-vector valued variables, each having density II (v) and independent of c and

the un'

The filtering problem then consists of the determination of

(1.2)

where P is the conditional distributiDn of the 11 the signal given the first t obser
vations_ We remark for future usc that xI! is a station:Hy r.brkov process and define
its transition de;]sity as

p(r, x, y) dy

3.0 S~quenti31 Relations

P(X . f. d)·lx.
TtJ J (13)

,,~

Our purpose in this section will be to derive scquential rcJ:>.tions satisfied by the
various J

71
1t (y). Our first result is:

Thco!cm 1: J nl n (y) is uniqucly detcnIillcd by t!Ie difference equation

-A2 • 2-





'_. flf_1_ n(z - h(y»J' g(o(x»(y - eP(x»J -1\ _1(x) (2.1)
K (n) n n 11

with

1
- n(zO - hey»~ ley)
K*

(2.2)

where

K (n)

and

P(zo E ell) = p(l)d!

• P(zn E dkl zll-I"'" zo)= p(LI zn-l'"'' zo)dk.

Proof. Using the relevant densities, we find

Jo 10 (y)dy

using Bayes' rule.
Now

P(Xn E dy, zn' ... , zo)

p(zn' ... , zo)

82 The Joufll~1 of th~ ASt'Cr.2U!b:l Sc;cnces
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-
using Bayes' rule and the f~:ct (hOlt "n' un -1 and zn -1' ... , Zo are indepcndcnt.

CowJ1;'_ry for r > 0

(2.3)

-

j,~f

J"II. (yl K:.l I·· Ig~a(0 (y - ¢ (xl)) " (" - h(xl) Jnln-I (xldx

(2.4)

, _1__ In-rln-r(Y)~.r .JLn r(Yn' ... , Yn- rt l' y)dyn, ... , dYn- rt ]
C(n,r) ~ ,

- -
-(2.5)

11n n(zj - h(Yj» g(ot(Yj_l)(Yj - ¢(Yj-l»)
j=ll-rtl

Proof. Now

TIle JOlITml of t1;" l:'5~ro_'1211(ic~1 Sci~nrcs 83
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-

by the Markov property. Noting t!l(\t p(1 ; x, y) = g(a+(x) (y - ¢ (x))) using Eqs.

(2.1) and (2.3), (2.4) is then a consequc:nce.
In order to cstablish Eq. (2.5), note that

1 p(x,,_r = y. z" .. ". 20)
In-r\,,(y) = p(xn- r = ylzn • ••.• 20) = -- ---------

C(Il, r) p( Zn_r' •.• , 20)

In-rln-r(Y)f J .
: --- ·r· L n rdYn' ... ,d)n-rtl'

C(Il,r) •

4.0 Synt!lcsis and RC31ization

In this scction, we will assume {xn 1 and I zn 1arc scalar valued, further we will
define I n+1(y) '= I n+1In(yL The first ql'cstion th2t arises is how can the function
I n (y) be conveniently stored by the digital computer. For the purposes of this section,
a probability density will be represented sufficiently accurately by a pair (J, n where

J is a 2M + 1 vector and f is a map from the set 11,2, ... ,2M + 1 1to the reals. The
components of J can be considered as non-negative masses, while fW is the point in
R1 which carries the ith mass, the value of this mass being the ith coordinate ofJ.

For illustrative purposes, we will specialize to a particular problem, the obvious
modifications for any other particular probkm being left to the reader, given by

Xn aXn -1 + Un -1

Xo c

Zn (x )3 + Unn

(3.1)

specializing Eqs. (1.0) and (1.1). The solution of the filtering problem then hinges on
determination of the set of functions {In (y) 1"=1 .. , or replacing these probability
densities by mass distributions {J

Tl
, fn ( . ) 1for purposes of synthesis; \ve find

2MtI

\' g(fll+1(i) - af" (j) n (2 n - fr;(j)) I n (j)L1
j=l

(3.2)

-A2.5-
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in view of Eq. (2.4) \'.'hcrc of COllrse ~ dCllotc:S proportionality and

1

for alln. It remains only to determine f"W, the griding to determine the filter, and we

found the following an effective choice:

80n
11 - 80 + -- (i - 1)
rn II M n > 0

(3.3)

where

2M+l

LfnW JnW
;=1

2M 11

I ([72 (i) - I1n)2 J n (i) .

i=1

(3.4)

S.O Linc(llizcc1 Filters

Again consi cbr the mod;:] (3.1)

I n t 1

IJ n - 1

The philosophy is to center the 11th grid at the previous estimate with a mesh
proportion:!l to the standard devi:!tion and the 16 an width of the grid was found to be
necessary in order that true signal did not escape the moving grid, for when the true
signal does not lie within the grid, the iteration scheme becomes very inaccurate.

To see the power of the above scheme, when.
the linear filter is solved this \'.'ay with M = 7, the
sequence [1n' a n

2 agree with the solutions of the
linear filter equations to 6 or more places.

Now Fig. 1 depicts the flow chart of the
syn thesis of the optimal fil ter an d Fig. 2 the actml
basic program for this synthesis \'illCn l. g and yare
Gaussian with means 0 and variances A, B, C

respectively. In Figs. 3,4,5 actual non·linear filter
outputs are given.

"'----

FIG. 1

111C JOUi:lwJ of the J"\5trO!:::ut~ca1 SCl':'l1CCS 85
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<RUN
INPlTf A SET OF VALUES A,B,C,N,r,r,G,D- 1-1,1,1,100,28,0,5,3

X Y2 82 Z
-0.62671366,1 -7.2100:3771 E-03 1.082460276 -0.06126'J082

X Y2 82 Z
0.174233842 0.281603879 1.098365541 1.729668579

X Y2 82 Z
3.107302746 0.101557808 1.03,D83581 0.'160081052

X Y2 82 Z
1.0397463 1.488286803 1.000002777 29.83663919

X Y2 82 Z
0.424397218 0.248842488 1.062254019 0.21460984

X Y2 82 Z
-0.53420807 0.050586494 1.082736927 0.0920627

X Y2 82 Z
-1.51678737 -0.028555029 1.08446859 -0.300751202

X Y2 82 Z
. -0.375670138 -0.728327511 1.011782685 -3.782497717
X Y2 82 Z
-0.860187797 -0.215'162635 1.078218119 -0.752476644

X Y2 52 Z
-0.953289574 -0.177153465 1.089599856 -1.034709837

X Y2 82 Z
-1.252639799 -0.671950375 1.02158232 -3.291268051

X Y2 82 Z
-3.579140751 -0.574517959 1.039936074 -2.557312928

X Y2 82 Z
-0.793037'182 -1.779880267 0.999999999 -46.94926414

X Y2 82 Z
-0.355264521 -0.316930636 1.055037501 -0.48116593

X Y2 82 Z
-0.137670378 0.0·18319706 1.083314383 0.796062291

X Y2 52 Z m = 1.14'- ·0.994986456 0.134199658 .1.090361175 0.9480255·18,
X Y2 52 Z m = 1.07
-0.874632224 0.279280152 1.09423155,1 1.613952893

X Y2 82 Z
-0.994831115 .-0.25511048 1.106106724 -1.82029243

X Y2 82 Z
0.243522124 -0.057927168 1.083492355 -0.152925109

X Y2 82 Z
0.493904941 0.176799593 1.096072635 1.293479301

X Y2 52 Z
-0.133336886 0.714298931 1.013096844 3.625369919

X Y2 82 Z
-1.163363547 0.188221612 1.077896102 0.584·122792

X Y2 82 Z
-1.212483872 -0.594665573 Ui50132145 -2.974561468

X Y2 52 Z
-1.52216S01G -0.5423488 1.0191361,71 -2.435385056

X Y2 82 Z
-0.75219402 -0.563766509 1.046580992 -2.534544307

FIG. 3
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>n.UN
INPUT A S"ET OF V,\LUES A,B,C,N,H,G,D- ? 1,1,10,1 00,?-8,0.5,3

X Y2 82 Z

-0.626713664 -7 .6663~ 109E-03 1.1044205~ -0.199489387
X Y2 82 Z
0.1742338-12 0.362627213 1.199835733 6.0019-j633
X Y2 82 Z
3.1073027'!6 0.158907622 1.154129465 1.443467115
X Y2 82 Z
1.0397463 1.534442006 1.005647891 29.47900856

X Y2 82 Z
0.424397218 0.320531\672 1.098283136 -1.751832833
X Y2 82 Z
-0.53420807 0.0926993!:9 1.146040324 0.1258441:91
X Y2 82 Z
-1.51678737 -1.03765016£-03 1.15116427 -0.621416614
X Y2 82 Z
-0.375670138 -0.228243036 1.18164216 -4.41585062
X Y2 82 Z
-0.860187797 -0.163992<144 1.159645294 -2.2640132
X Y2 82 Z
-0.953289574 -0.12768512 1.156771378 -1.895308942
X Y2 82 Z
-1.252639799 -0.718656156 1.151797643 -8.534G954S5
X Y2 82 Z
-3.579140751 -0.400765397 1.151018841 -3.836922289
X Y2 82 Z
-0.793037782 -1.835628393 1.005485025 -49.326864%
X Y2 82 Z
-0.355264521 -0.461137472 1.08737794 -0.4431<174<18
X (?DJI Y2 82 Z
-0.137670378 -0.019237882 1.151243087 2.614324278
X Y2 82 Z- 0.994906456 0.131987889 1.165645072 3.00356201
X Y2 82 Z
-0.874632224 0.175381465 1.16540",846 2.9738L~8763

X Y2 82 Z
-0.994831115 -0.167527736 1.181521438 -4.309538766
X Y2 82 Z
0.243522124 0.028262743 1.155877354 1.645329324
X Y2 82 Z
0.493904941 0.211808955 1.177252095 4.05911395
X Y2 82 Z
-0.133336886 1.000H1847 1.045880687 11.203906
X Y2 82 Z
-1.163363547 0.351535002 1.127273231 1.853232947
X Y2 82 Z
-1.212483872 -0.23467883 1.208706668 -6.001854186
X Y2 82 Z
·1.522165016 -0.26273182DH 1.174029079 -3.8<17118269
X Y2 82 Z
-0.75219402 -0.085167227 1.15103151 -0.388935127

>RUN

FIG.4

88 The Joml'~l of the Astron'lt1ti~,~1S~iQnecs

-A2.9-



INPUT A SET OF VALUrS A,n,C,N,',I,C,D
? I, 1, 100, 25,28,0.5,3-

~Iil.~

X
-0.626713664
X
0.1742338:2

X
3.107302746

X
1.0397':63

X
0.424397218
X
-0,53420807
X
-1.51678737
X
-0.375670138
X
-0.860187797
X
-0.953289574
X '
-1.252639799
X
-3.579140751
X
-0.7930377 82
X
-0.355264521
X
-0.137670378
X
0.994986456
X
-0.874632224
X
-0.994831115
X
0.2435221-24

X
0.49390'1941

X
-0.133330886
X
-1.163363547
X
-1.212483872
X
-1.5221650] 6
X
-1.522165016
X
-1.522165016

Y2
-5.71231531E-03
Y2
0.30252230G

Y2
0.169843509

Y2
0.808079262

Y2
0.1873380]4

Y2
0.076921313

Y2
0.01134297
Y2
-0.070706%
Y2
·0.111720796
Y2
-0.096918009
Y2
-0.585853101
Y2
-0.335943353
Y2
-1.813194725
Y2
-0.65074] 00'/
Y2
-0.165896435
Y2
0.043995423

Y2
0.103471067

Y2
-0.115170595
Y2
0.045290224

Y2
0.189155163

Y2
1.242588905

Y2
0.548213554

Y2
0.030634143
Y2
-0.0863327 8
Y2
-0.08633278
Y2
-0.0[:633278

FIC.5

82
1.207034502
82
1.326693338
82
1.252808299
82
1.386524369
82
1.239243125
82
1.2363536
82
1.2370830'~8

82
1.245463477
82
1.2,t9881121
82
1.244129366
82
1.39368123
82
1.267020386
82 .
1.018603823
82
1.138083593
82
1.209426125
82
1.247771711
82
1.250737015
82
1.267160983
S2
1.248425042
82
1.277583089 .
82
1.240·~02613 .
S2
1.210012625
S2
1.253369976
82
1.254152365
82
1.254] 52365
82
1.2541-

Z
-0.636580369
Z
19.51207482

Z
4.553206893

Z
. 28.34808] 24
Z
-7.970270567
Z

0.232671896
Z
-1.63544 9684
Z
-6.418588354
Z
-7.047608086
Z
-4.618S43~;05

Z
-25.11586892
Z
-7.883402385
Z
-56.84549891
Z
-0.322922453
Z

8.364173538
Z

9.503/39045
Z

7.274217094
Z
-12.18122684
Z

7.331909147
Z
12.80,\81862

Z
35.1693~,135

Z
5.865562956

Z
-15.57499432
Z
-8.311410673

Z
·8.3111,10673

Z
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x = c0

z X 3 + Un'
(4.1)

71 71
I~"

Defining fin as 3~; it follows that a Iinedrized filter for Eqs. (4.1) is given by

I a;:n-1 + J(n-1(zn-1
A3

.1

x n - Xn -1)

Xo
(4.2)

I a P H (H 2P + C)-1I K
I n n n n n
I

cJ2P cm 2p + C)-l -I- B .I Pnt1I 71 71 71

Noting that xn = 0 is a stable equilibrium fDr the estimate, wc take Xo = 1 and
simulate the behavior of Eqs. (4.2) Dn the same observation sequence as the nOli-linear
filter runs (sec Figs. 6, 7, and 8 which should be compared with Figs. 3,4, and 5
respectively). Notice that the non-linear filter is markcdly better and in particular the
linearized eslilllate whcn once small stays sm::tll, so that its long-term behavior is quite
poor. Figure 9 is the time-sharing program for the synthesis of the linearized fi1 ter.

6.0 RcmmI(s On the D~ita

,.-

rrl

Now Figs. 3 through 5 give the conditional error standard deviations of the onc-step
predictor. Hence, the filtering error is 052)2 - 1) 4

4 (S2)2 - 1

2

0- ---~~~~-~~".:-'@..~~~-~_.- X= 0 FILTER

~~NON-L1NEIIF~FILTER .

-0--- 0 0-
1 10 100 NOISE POWER

We point out that somewhere between a signal-to-noise level of .1 to .01 the data has
very little infolmc.tion useful for filtering. Notice from Figs. 6 thrOllgh 8, the
linearized filter differs little from the filter

x(t) =' O.

It may b;; of interest to the read-;;r to discuss some prc!imina;y results concell1ing
the implim;;ntatioll of higher order examples. In joint v,'ork with Dr. Roger Geesey and
Dr. Kenneth Senne, we h8.ve found that in the two dim·;;nsi0l1:l1 case, computing time

',,;.,A2.11::"-



>n.UN
INfU1' A SET 01' VALUES A,D,C,l'i,G,D
? I, 1,1,25,0.5,3

- X X2 P2
-0.626713664 0.340809638 1:025

X X2 P2
0.174233842 0.43881852 1.22788809

X X2 P2
3.107302746 0.313897009 1.217746038

X X2 P2
1.0397463 5.005466813 1.27515915

X X2 P2
0.424397218 I.fi70032142 1.000044244

X x1 P2
-0.53420807 3.566021129 1.003520779
X X2 P2
-1.51678737 0.1623018> J 1.130189266
X X. P2
-0.375670138 -o)\TI)868624'l6 1.280564136
X P2
-0.860187797 -o.'~54320184 1.319931126
X X2 P2
-0.953289574 -0.033203353 1.329948656
X X2 P2
-1.25:>639799 -0.023840069 1.332482327
X X2 P2
-3.579140751 -0.014825045 1.333119291
X X2 P2
-0.793037782 -0.028046398 1.33327963
X X2 P2
-0.355264521 -0.014780099 1.333317·133
X X2 pi 1.333329167- -0.137670378 -7.04225066E-03
X X2 P2 1.333332282
0.994936456 -3.4 2709413£-03

X X2 P2 1.33333307
-0.874632224 -1.0563542E-03
X X2 P 1.333333267
-0.994831115 ~,48039586E-O~

X X2 0 P2 1.333333317
0.243522124 -4.24239747E-01

X X2 P2 1.333333329
0.493904941 -2.11654274E-0-1

X X2 P2 1.3333333332
-0.133336885 -1.05502322E-04
X

FIG. 6
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>n.UN
INPUT A SET OF VAL1JI3S A,B,C,N ,G,D
? 1,1,10,25,0.5,3- X X2 P2
-0.626713664 0.405303469 1.131578947
X X2 P2
0.174233842 0.3637200t: 1.275323163
X X2 P2
3.1073027·16 0.216477319 1.312553514

X X2 P2
1.0397463 0.379427161 1.327289313

X X2 P2
0.42439721 S 0.139187005 1.323805439

X X2 P2
-0.53420807 0.0700670\'/1 1.330303~38

X X2 P2
-1.51678737 0.034424199 1.332691256
X X2 P2
-0.375670138 0.016166016 1.333172253
X X2 P2
-0.860187797 0.00796464 1.333293036
X X2 P2
-0.95328957~t 3.95826858E·03 1.333323257
X X2 P2
·1.252639799 1.95239036E-03 1.333330814
X X2 P2
-3.579140751 9.73270055E-0" 1.333332704
X X2 P2
-0.793037782 4.77290007 E·04 1.333333176
X X2 P2
-0.355264521 2.38624813E-0·' 1.333333294
X X2 P2
-0.137670378 1.1934218£-04 1.333333323
X X2 P2

';.........
0.994986456 . 5.96796455E-05 1.333333331

X X2 P2
-0.874632224 2.98419411 E-05 1.333333333
X X2 P2
-0.994831115 1.49202031-:-05 1.333333333
X X2 P2
0.243522124 7.46017474£-06 1.333333333

X X2 P2
0.49390'1941 3.73013255£-06 1.333333333

X X2 P2
-0.133336886 ] .86509746E-05 1.333333333
X X2 P2
-1.163363547 9.32550027E-07 1.333333333
X X2 P2
-1.212,183872 4.66273965E-07 1.333333333
X X2 P2
-1.522165016 2.33136815E-07 1.333333333

FIG.7
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"I~'

INPUT A SET OF VALUES A,n,C,N,G,D

? 1,1,100,25,0.5,3

X X2 P2

-0.626713661 0.4T1t178252 1.229357798

X X2 P2

0.174233S42 0.319046447 1.30558208

X X2 P2

3.107302746 0.168968668 1.32599,%32

X X2 P2
1.0397463 0.100577922 1.331466414

X X2 P2
0.424397218 0.043:i78501 1.3328G2522

X X2 P2
-0.53420807 0.024350268 1.333215406
X X2 P2
-1.51678737 0.012155741 1.333303837
X X2 P2
-0.375670138 6.05890224E·03 1.333325958
X X2 P2
-0.860187797 3.02427675£-03 1.3333311;9.
X X2 P2
-0.953289574 1.51129348£-03 1.333332872
X X2 P2
-1.252639799 7.54499441 foOt 1.333333218
X X2 P2
-3.579140751 3.7715996~E-Of 1.333333305
X X2 P2
-0.793037782 1.88418258£-04 1.333333326
X X2 P2
-0.355264521 9.42039005£-05 1.333333332
X X2 P2
-0.137670378 4.71059345£-05 1.333333333
X X2 P2
0.994986456 2.3553389E-05 1.333333333
X X2 P2
-0.874632224 1.1 7767752E-05 1.333333333
X X2 P2
-0.994831115 5.8883538J £-06 1.333333333
X X2 P2
0.243522124 2.94418199E-05 1.333333333
X X2 P2
0.'193904941 1.47209322£-06 1.333333333

X X2 P2
-0.133336886 7.36043132£·07 1.333333333

FIG. 8
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10 PRINT "jNfUf A SET OF VALUES A,I3,C,N,G,D"

15 INPUT A,B,C,N,G,D
37 P1=cA
38 X1=c0
100 X=SQ:Z(A)"SQR( -FLOG(IZNlJ(-I») 'COS(2'TI~RND(-1»

109 W=1
110 V=SQI:(C)" SQ:~(-2'LOG(P..1'~D(-1 ») 'COS(2 'PI'RND(-I»
120 U=SQR(BYSQlZ(-2':LOG(Rl'W(-l))' SIN(2 'PI 'RND(-l »
124 Z=X'rD+V
130 X=G"X+U
235 GO TO 300
245 PRINT "X", "X2", "P2"
247 PRINT X, X2, P2
251 W=\V+l
260 IF W <N THEN 110
300 M=3~Xl"'Xl
302 X2=G*Xl+1'1 'G'M/(Pl *1,VlIf+C)*(Z-H/3*Xl)
310 P2=G'G'P1 *C/UJ"PI *;,r+C)+D
320 Xl=X2
321 1'1=1'2
330 GO TO 2~5

FIG. 9

varies as ~l't if the analog of the convolution equation (3.2) is performed over the

entire grid. Hoy/ever, by summing the convolution over on the interior of a mo\:ing

ellipse of points, with center and axis determined by a sl1bopti~nal fJlter, we have,

found significant time reductions without loss of accuracy. For real time synthesis of

higher order examples it seems that parallel processing is the only effective technique,

although Gauss-Hermite integration is being considered.
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helpful in writing and debugGing the various programs. Discussions with Dr. Jack
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time-share remote termin2.! without which none of the results presented here could

have b;;cn obtained.
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APPENDIX 3

MONTE CARLO SIMULATION PROGRAMS

Two Monte Carlo simulation programs, D13 and D14, were run for

statistical data. Program D13 simulates the conditional mean

non-linear estimator and the cyclic non-linear estimator on the

line, while D14 simulates the cyclic phase non-linear estimator

on the circle. Program D13 together with the corresponding flow

chart, are'shovffi in the following, where:

PP 6.28318530

R7 Parameter R, variance of the ideal estimate (Wiener)

AI Floating Point Number of I

F9 Parameter F, filtering time constant in sample interval

units

X Signal Phase

Y2 Conditional Mean Non-Linear Estimate

Z8 Phase Lock Estimate

X2 Cyclic Phase Non-Linear Estimate

SA Cos Component of the Cyclic Phase Estimate

CA Sin Component of the Cyclic Phase Estimate

E(I) Measurement Density Function

R(I) Random Variates, uniformly distributed from 0 to 1.

AJ(I) Probability Density Function

QQ(I)Old Grid Point Value

VI Independent Random Norrnal Variate Vl

V2 Independent Ral1c}cn-t Normal Varia'ce V
2
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U Independent Random Normal Variate U

Zl Observation Zi
~_.,

. Z2

YE2

Observation Z2

Phase Error, conditional mean non-linear estimate e , cycless

XE2 Phase Error, cyclic phase non-linear estimate e ,
c

cycles

ZE8

B

C

G

Phase Error, phase lock estimate, e , cyclesp

Variance of U

Variance of V1 or V2

Integrator Gain K

G1

G2

Mean of the Cyclic Estimate Error,

Mean of the Phase-Lock Error, € p

€
C

G3 Mean of the Non-Linear Estimate Error, €
'm

W Discrete Time Index

AK Normalization Factor

MM Number of Grid Points from -TI to TI, MM=2*M+1

N Number of Sampling. Points per Trial

NRUNNumber of Trials per Experiment

SMI Modulo 2n Error, Conditional Mean Non-Linear Estimate,

SM2

SM3

XXA1

XXA2

M (€ )
m

Modulo 2n Error, Cyclic Phase Non-Linear Estimate, M(e )
c

Modulo 2n Error, Phase Lock Estimate, M(e ). p

Mean Square Error, Conditional Mean Non-Linear Estimate,

(e )2
m

Mean Square Error, Cyclic Phase Non-Linear Estimate,

(€ ) 2
c
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XXA3 Mean Square Error, Phase Lock Estimate,

XXMl Mean Square Modulo 2n Error, Conditional Mean Non-Linear

Estimate,

XXM2 Mean Square Modulo 2n Error, Cyclic Phase Non-Linear

Estimate,

XXM3 Mean Square Modulo 2n Error, Phase Lock Estimate,

(M (E:
p

) ) 2

-

"-'

Input data are read in and printed out when program starts. Initial

conditions for each run, which includes the initial values for esti-

mates, cumulative statistics, probability density and density grid

are set at this point.

Gaussian random variates are generated using Vector algorithm:

Where U1" and U
2

are independent random variables having a rectangu

lar density function on the interval (0, 1). Therefore, -2 In V,

2 2 2
consequently, r = Xl + X2 ' has a Chi-squared distribution with two

degrees of freedom, which implies that Xl' X2 are independent normal

random variates with zero mean and unit variance (Ref. 19, p. 953).

In D13, uniformly distributed variables are generated using IBM system

360 subroutine RANDU.

Conditional mean non-linear, cyclic phase non-linear and phase-lock

estimates are computed and data arc printed out for each discrete

time point. The stmt.• and Eg. nu.r.J.)ers ':lppearing in the flm; chart

are the statement and equation numbers used in the program and the text.
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G'ather Cumulative Statistics
. up to the ~';th Sampling Point
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i
~
I

I
Ir

FLOd CE.!\RT (Dl)

\ PPi'\" P~!)TJT DATA., -"" --===T::==~.~ _I KO: ',-rr= ('~, l'T 0 ,T' J' I 1'7 ',"'" T01~: "" Vrl-' iO
,-----..-'->..------- - .··-"~-';;:~ti-l;i~~~~:=) ,~CC •

Initialization for each Run (Stmt. 10-36)
for:

Estimates
Cumulative Statistics

Probability Density Grid

r---.-----=--=-~---=..-==-JJ=~==~3-:~,§i t
Cenerate Gaussian Random

Variates by Vector Algorithm

r---------- 0 t. r_-_L

_

2

__

Conditional Mean Nonlinear Estimate &
Cyclic Konlinear Estimate

* Compute Measurement Density
Function (Stmt. 140-670)

* Integration (Stmt. 180-186, Eq.6 .. 1)
* Normalization (Stmt. 175-225, Eq. 6.1
* New Density Function (Stmt. 230)

_.

'\" .,'-

PRIHT POHrr DATA
(Stmt. 260)

Yes

__ No
(print Overall Ru
~tatisti~s (StmtJ2':D

Yes
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PROGRAM D13

-----_._---- -------- --_._----~----

.
--.----~....._--..__._-

INITIALIZATION FOR EACH RUN

OP"=NSI'J'l \J(500) ,,1L(SOO) ,H(:')OO) .0(.)(.500), >:(500 ).A'~L( 500 ),P'J( R). ,
----P,.'-=&-rP-:t!:-·""-"'-}·--·-------------·-------·-----------.-.--_,:,_.~..-----

- -, R::=':A!)~~:'O,) '-~~.R7.F0.N.Nf(UN MONTE CARLO INITIALIZATION
·------9-P']-K ~Alt--3= 1 0.-(}-')2 I 5)- ..·--------·------·-~-·-~·-·---- .. -·------·-----··

9 N~ln=O

_------.--~._._.:_'""_:-U_~~=\jR u·-t -.---------.--------.-...- ---.------ -.--..-- ...----.-.-.---.~. .__

IX=31415'1
--t·-e--N'S-=1)----·

11 A =p 7

------p-·r-=A--·--· ----.--.

x1 -= 0
....------------- --z ~-=O .--

C=P7'T':::9
---·--------fR'3--R::z..I=--O:;9~

14 -= O.
--·----·-----G-l=O----·..-------·-----·---------·-·--------

G 2 =(1

--G-:3-=O----------------·--·--·-----·-·--·-----·-·-

G'-13-=O.
A--1-7'=-1-':t-) l----------------,-------·-----------·-----

AN=N
--------------M=i\·M---·--------------------..·--·--·--·--..- ....----.-

G=1.
---------------P-~.-={~-.--

l'H';=O
------+-~t-t.:-=-_G'---- ------------

.__ ..._---------_.-

----Nl::c---EY Gl:-K ,=--p l:-E--Ni::-E\1----€-Y EM.... --P;,;-E"1

f\ L '6 [= M C Y MSEll P L '~s c: M 'N 1 )

13=0
-~~------_i'-~::;;.O-.-..------------.---

'in I Ie (6.60) I,t,

--------&!j.--F.. }P-M'; ..1L;d--~=-y-I-4~

',',rnT:::(6,62) h:7'

-6-2--F-q~M';+-{-4rl~..7.=·,F6 .--3--1-·
\I'1IT=:(6,S4) ~9

---------Q-4-.=f,?":- A·T-{-I. -t -~-9"'-,F -7-0.2)----------.--.-.-.-----..--------..----..-------'

\>,q I T~ (6 ,66) 8
----------o6--C-fV~r_._'~-f_f-3--+·-B = .f=7.-3}-------·-'--..--------------·-------------------'l;,.'

",,~ I Te: (6 .:> '3 ) c
---------+.6-'1~J~MA-T-{-3!+~-=-,--F-7-.-3 )..---

\o,p I TE ( 6 ,2)

------------z:-PlP--I.,'A-r(-i-J1H -----x

1 \LMS~ CY~SE PLMSC
......·---~~-·--1-7-::~=c·-- --.-..,- -_ -- -.- ..--- -.--------.-------------.-, ,- ---.---- ---.--.--------..-----.--.-- -.. --,.

5::=0
____• ~~..;.• .L:.:'"-.=B-\h.-------------- -----------------

5:;= 0
---0---------·------1,=--(-·----------·-----------·-- .---.--.-.------------------.-------.---.--

VI=')

----·---------·---·s 1 =SOH T(A} .-----...--------- ----.--- ----.-.--. ----.----------- ---.->---.-.- -------. ---------.---

3) H'~=2-'<M+I

-- ..- --------··,5.S-...D.':1.-·4·'j··--I-= 1- ~ ·L~J... . .__ ... ...__.

·--·----'~-;.,-t:T':."'-r~:··;-r·~:-~-·::'-r ~_r-=-!_;--r~~·~-;---------- ._-.------

4 0 .I, J ( r I ::: ( 1 • / S r-, ,) T (; ~'3- ..\: ) ~ =< ,,( -. ::; 'C :. L 1 .: ", L 1 I
--45'-T=T+''::::1 ( 1')-

7 C r; '.1 75 r -= 1 , II r-A

-A3.5-
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RAl\1DOM VARIATE GENERATION
-------------------------_...._----

--------

==- -=---=~?~::;::::::~-J -CO -=,,\T{ T tZ!:-~-_-~,--_-_-__
Gl '.\=1.

-----'. ,_,,·--rtrc~c-')~J--r.q:---:Ol~-l.~--------------

1'1-70 !'l'=IX':':6S53;
l;=-TTyrT::J • n'i,T6--------------

1 5 I 'l' = I Y+ 2 1 4- 7 433647+ 1
Tt)-y::-C=:ry~----·-------·-----------------

Y~L=Y=L~.4656613~-~

--rX-=TY---
1 4'3 C p"J ( I ) = Yr L

-------rs~ry__:_T-=-l-w~-.I-I-~--Jt"I-l'-ry,-IJ.~0--- ----------------

l:n x::: 50 K T{ c\ ) '" S OR T ( -2 • '" A L CG ( K N (1 ) ) ) ,;- C os ( p P '" P N ( 2 ) )

-----·----rro---vr=-SJ~Ic:}- ;:SiJRTT:'''-Z--;-*-kTlT:;-TRNT3 r-rp,coS-rPPiPN[4} )

V 2 = SO R T (C) *- so q 1 ( -2. "" A LOr, ( R N (5 ) ) ) !;: C os { PP ~'R N ( 6 ) )
---;l-Z-~~:)'r-z-lt':Jt~''3'Q~Tl-''''2'~AC-c-r;--t-q ~t...,-)-)-) ..~S- IN (-'Jp~,n~-t(-S1--)---

130 >c:::G'i<X+tJ
Z 1-=CLJS-tX) +-V1------------~----

Z?=SIN(>C)+V2

._--------------

---------t-4C--y-o-=y I-------------------------------NON.:.::.r;INEA-R.-IJENS ITY
~ 0::: S 1

--------->rt--=:)

51=0

COMPUTATION

oc:::e.*~J/t\'),

----.-l-'tj:~~o~tol-=_!tw,t-

A I ::: I
----.---t7r}-i-r-t=eS-t-c5-:r-t-A 1-= l-ot----------·

,_ 15C Yl=Yl+';J(I);j:QQ(I)

----~:s::-S-l-=St-+~iI-)"'A'J(·I-}--rOtrt-I-'---

JQ =00 (I ) IPP
--------------A-e-=-jQ--------

6.36 F: ( I ) =pp", (C') (I ) /PP-';Q)

-----.,--...,tr:J-r-e·i-rT=-(iTt--:~f}5-tE(_f-r-H-",~+-t:tz-~S-INr~{·I-}-)-)*"*'2}f(-2.-*e-r

63q Y=(E(I)-sn.) 0~7.6b7.66?

-----~-(>u-7~~"1-r-t--=-.::--x-at==-1I--)-)------------·------MeasurementDensity Functi on
GO TO 670

---------t,"6'-g-E-(-I-)=-J-

67C C'lNl1 ~JlF

-------t-ry--o---~r=-S(}~_'f-{--':rl.._-y l .....,'>-yi-}------------ .---------

05=Yl-q.~Sl

--------cc="l-.,:-:'21-/A-~--------

1)0 164 1=1. ~.,."

----------1c]-- A-I-= 1--- -- -------------------'-------------------------

1 .j,~ A L ( I ) =c,::>+ Q 6·' ( A I -1 • l
-------t-c-:;--A-K=-£- ----------

Y2=O

675 F/+='\I7,;eS~qT(H)/06

---------------·-----'tI,--1=t(~·t/4--.-----------------·------------..---------------------

1;- (f- 4-" TIE 7 7 • f·..., 7 ,} '75

---··------·-t-7 -7--C - f;-=A.··.tt ir-.--·----·- .. ---·------------------".__ .-.._--------_.
r~ 1"C, :-) ;:'15 r -=1."/',1

----......:"-"1 .--_:~-- "\ .-,;;; {j-. --_ -. ------ .

Aro::

Integration
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-----1- --------J-r-=td~:=_4---- -------.---------------

IC(Jl-l) 7~3.723.724

---rzs -J-t=1------------·-----------·---·- .-....

"'~" 7 24 J2=A I v:: 4
----r2-5-t=-t-.J2-**)--r-9(}--,7--2-&,~2t:r-----

I-;~:-~~;,~h~;: ~~;~~=';;~2. '~I ...
-----i- ----IT--{ OuO- ::rO.- )--133 ,-1S-3-d.3 7 ------

IE? R=C
--~G_8-T'3----t--?--6--------

123 R=EXP(-QOa)
----.- ---l-<:-S----t>t-t=A-t-H·E-(-I-I-i"'R-*p·-j<I Ii

P' 6 C 'l~n f'1U;:-
------2"lvrt-{I )=;\H-- ----------.------------.-

A K=A Kt H I I )
----------S·2=S-2+AC-t--I) r.At (1 -)*tti-I-l----------·---

?lS Y?=Y2+/\LIIl'CH(U Renormalization
------~~2--C--Y2-=-y-c-/A_,( ----%-------------------.

~2=S2/A.K- (Y2.-.*2)

c-C5-f.70--2"3-o-1~1--.N·'"

H(I)=H(II/\K New Conditional Phase Density
------2-3--j-A-j{ I--)=!.f+H------- .-----.------..-.-..--- .. - \

2 j IlL - r"A-----··---·--·-·------------------~·--.,---~·----·- ".-.
------"o-~,"c=_o--. ._GYCL;J:C_NON-LINEAR ESTIMATE

CA.=O
-----f'--c'J--2-3-2---I·-.:=·1--.!J·!4----------------------------

SA -= SA H. J ( I ) '"C 0 S p, L ( I ) )
-----" _"---2-+2-c.4=GA-+,!\..J-.(-I-}-~~SP,;·(Ab(--I-H--------

233 1~=ATAN2(CA,SA)

-----~frtr_ff3·-='f_A--lt:---------------------------..----

F(TB-3.1415:'27) 505.5C'5,SlJ
5-1-H---'fr,::o-T-A--D.--2 e3l---3-53-

GO TO 500
----------'".r-}-5-t-=--{-+&+-3-.--!-4-15-72-7-·)-5-l-S--y5-2-5,525---

5 1 5 T A. = TA +6. 2 e3 1 r 53
----------G8-'h}--5-0O--------~------

525 CiJf\,TI /liUC:
------5-3 {)-X-2c=--l"-;\- -------

23G \';1-0
--------...J¥'dH-=-Y-0--3-.-1--4-1- 5-~2-7

YC2.=Y":+3.141592"7
------·------f'+J-2-3~--1--=1- .--'-/: 'vi -- ----------- -------..-.----- . -..--.----------- --.-~--.-..

1~ (.-,\L(I) .LT. YOl .LF. t.L(I) .GT. Y)Z) GO TO 235
<:--3-9--\\1-=\\1+.6--J{I-)-------·----------

.2 3? C U i\! TIN Lr.::
---=-1--06-D---t.--o - S-I 1'..; (--X--Z--J-}-v.l~~S I-~..... (-l-0- l-t-- V-2-';;:'C-'JS-~Z-~- } =.E1I.AmLLUCX----·--------------

Z~=Z;;HL;:3/(1.+F91---_._-----'---_. .__....._--._-_._--._--~.-
.------------2 4 ~--~ 6=-~('+ 1.--------------------- --------------------- -------- GATHER CUMULATIVE STATISTICS

25C I;:; (Sb-4.) .~59 ,25 7 .2::,"7
.-.-.------ ---25:7---::3 =s e+H X-'l'-2 );4d 2)- ----- .. -----------------.- -------.----..--.-----.--.

T".=T:1-+ «;<,-:<2) '~~2)

-------.-..--.:+..>:,,-l..:.++~-x:-]J·I· "i'" ? '1 . .__ ... . ._ .. __ •.

-A3.7-



~';'=59-tl.

------~·p::c,lt-;x_=_x2-----·-·---·-· ._---_._-----

Program D13
Page 4

-.Return_£or-next -time--point----

G 2=::G 2+ x- ze
----"------- G3 =G3F)(;.;;yZ-----·-

25;1 5'.\1 =X-Y2
----·------~',rT=·)(__-)(2-----·----·-------

~·.\3=X-Z3

·---'-STD-rt=\""SMT+3. l-i1 :>-SZ7r9v"5-;gOJ'~O~
S0S ~Ml=S"'l+i>P

·---r.GO-icr----ol-u .--------------.---------------------

S03 Ie" (51-11-3.1415927) <;-20.<)20,909
9 (\~r=-S:Jrl---=P·p -~----------------------------

GO TO ?03
920 I --t"SM"2 'F3';-r-4T59Z,')--g1 5 ,'.,.1-:3,"9""1-:-3-------·-------

~1:: S·\12=SM2+ D P
GO-TU7Z"T-----------------------------------·

913 Ie"(S~.'2-3.1415<;271 930,930,91)
-------91~~.\2::::.·SMZ=,~P--------------·---·----·-------------------.------

GO TO 913
-----~3"o__IF{-St.Ut--3.-14-15-q2-7}---\i'2"5,'J2'-j 'f()-23- -_.---.----

925 ~~13=S~13+PP

----------'(;"tJTu----<]-s-J---·----

923 IF (9-13-3. IH5927) 940,940,929
------~~~~,13-=SM_.}...-f~p______--------·----------------------·----

GO 10 923
-~~-1-c ~'S---t.-t..-~t2·-.~·tn__.;4t----··-----
~41 c:·.\e=SMP+S~~li'*2

-------"fl-f~-tt=Tf;jB'V~Mz,;::*"2--------·----------··-------------

~-,. 1 '.19=T\~9+ S ~'3""t< Z
-----------y-xAA-t~'31S9'----------------------

X XA 2 =13/ SC;
7\-XJ'>:"3'-=·T-0-/--S·{:;-----

X X'.\ 1 = ~ M '1 / S 9
-x-x f.o2'=rl'J! ;II~-'))-.--

X )(1.13=pF:1 IS ~

----------'1''':-2=(-)< --y 2} -/ PI'

X~2= (X- X2) /Pp

===:::====~z=.;> (X 7-~l-)- /PP---
260 W~ITC(6.261) W.X,YF2 ,XE2 ,ZE?'.SMl.sr"Z.S':13.XX t,I,XXA2. XXIo3,)lXA l,XX·12,
LX-x~,t-:3"try;t-------~------ ---- .-....--------

PRINT POINT DATA
? 6 1 ~ C1 r.- ~1 '\ T ( F '). ') • 1 X • 1 3 F 7 • 2 • 1 X ,=: 1 2 • 5 l

--------2t-~!--Y=-=A~·"5·(-X--Y Z-}-----------------------------------·------------------

200:; \',=\-:+1.
--2-c''3---1-C-{-.....-J·,-,'-:-1-1-4 o'}-, I-lt 6';",2&5--·--------

2c5 S~=~8/S~

'f3=1-H/S-:}----- .--------

T'':=T';)/50
--·----------G-1~G-l~I-S-~-----~----.--.--~._---'----~----------~~-------------~~---~-------

G2 =G 2/ s·:,
-----G .::: _G-:bL '5-.l------

='} c, =~ \1;1 / 5 c

---_._--_._-------------_._-----_.

. - :/. ;-'--1 Tc.: (b.13(')}

1 fee <:: :1 c, H '\ T { 1 () h 1

--------·--1+ e-~-- "'-f)----l·,-:;-e-e--+" l-.'f M·
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r.L U'::J .L CUll ;U.1....J

Page 5

1 ec ~ ',oiC< I Tc ( 6 , 1 :i 1 0) I, A J (I ) ,
___ ....:-~-'--r<::-lv~r'}~!-I\--T---+I'4-,-2 X-·J~1--~.-5+---·-----------·-·--;·------·-

113) ~qIT~ (6,1200) . Prlnt Overall Statistics
--------H:-ao-c8R~A-:H53H-------------_N.-e-i------------cy€f::-IC---·--·-------P-.I;::-d--

1 2 5 0 \'Fn T c=: ( 6 d 2 1 0) 5 3 , T e , T C ,5 M3 ,T ,,~ 9 , T W?

····------1-2·1.,.)-->=-,..JE~J!-"''Hi-uH-M'=·A_f\'___5-fr____:=: Fk----- .-=-1-2-.5-,'2 X.--::12-.-5-,-'cX-,--ET2-..-5,--Z-X-.--E-l·c.5.-2X rC"12

1.5.2X,E'12.3/)
------rc2-f}--·.';:;:-I-'t--::-{-6rl2-3 -tT}---{:d--,-G-l-. u-2-------------- .

123' F~RM4T{16H ~~ANS ,E12.5,lX,E12.5.2X,E12.5/)
·-------l-2-Tt---N~;,'~t=t';NN+-t--------------------..

IF(NNN-N~U~) 10.1240,1240
-----~l-oB----------------_·-----------------..

-' Return for next run.
E~JD

-
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, ,-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

REFERENCES

Bucy, R.S., and Joseph, P. D., "Filtering for Stochastic Processes
with Applications to GUidance", Interscience, New York, 1968.

Bucy, R. S. , and Senne, K. E. ,"Digital Realization of Non - Linear
Filters", submitted Automatica. Also Seiler Lab. Report SRL 70-0010,
Air Force Systems Command, U.S.Air Force, July 1970.

- -- _.--_._-_ .._"~'- - -

Lo, J. T., Finite Dimensional Sensor Orbits and Non-Linear Filtering,
Thesis, Dept. of Aerospace Engineering, U.S.C. ,1969 •

.Bucy, R. S. , "Bayes Theorem and Digital Realizations of Non -Linear
Filters," J.A.A.S., XVII, 2, 1970, 80-94.

Bycy, R.S., "Linear and Non-Linear Filtering", Proc.I.E.E.E.,58,
6, pp.854-864, 1970.

Viterbi, A.J. , "Phase-Locked Loop Dynamics in the Presence of Noise
by Fokker-Planck Techniques", NASA TR #32-427,1963. Also Proc.
IEEE, V. 51,p.1737, Dec. 1963.

Van Trees, H.L. ,"Functional Techniques for the Analysis of the Non-
. Linear Behavior of Phase-Locked Loops," Proc.IEEE, Vo1.52,pp.894

911, August 1964.

Develet, J.A. ,Jr., "An Analytic Approximation of Phase-Lock Receiver
Threshold," Trans. IEEE, SET-9, pp.9-11, March 1963.

Develet, J.A. ,Jr., "A Threshold Criterion for Phase-Lock Demodulator, II.

Proc.IEEE, Vol. 51, pp.349-356, February 1963. Correction in Proc.
IEEE., p. 580, April 1963.

Cahn, C. R., "Piecewise Linear Analysis of Phase-Lock Loops'; Trans.
IRE, PGSET, SET-8, p.8, March 1962.

Spilker, J.J. ,Jr. , "Threshold Comparison of Phase-Lock, Frequency-Lock
and Maximum-Likelihood Types of FM Discriminators," presented at the
IRE Wescon Conf.,San Francisco, Calif. August 22-25, 1961.

Charles, F. J., and Lindsey, W. C. , "Some Analytical and Experimental
Phase-Locked Loop Results for Low Signal-to-Noise Ratios", Proc.IEEE,
V. 54, No.9, p.1l52, September 1966.

Robinson, L.M. , "Tanlock, A Phase-Locked Loop of Extended Tracking
Capability", Proc.1962 Conf. Mil.Elect.,February 7-9,1962.

Fillippi, C.A. ,"Advanced Threshold Reduction Techniques Study" ,Adcom,Inc.,
NASA CR-682, January 1967.

.-...~~-'.

15. Balodis, M., "Laboratory Comparison of Tanlock and Phase-Lock Receivers,"
Proc.1964 NTC,p.5-4, June 1964 .

. 16. Enloe, L.H.,"Decreasing the Threshold in FM by Frequency Feedback,"
Proe.IRE, V.50,p.18, January 1962.

17. Luby, D. D. , "Demodulation of Angle-Modulated Telemetry Signals, Vol. I:
Advanced Modulation Techniques", Paileo Report No. ESD-TR-66-408,
AD 639 787, August 1965 •

- R.l -



-'

-

References, cont'd.

18. Gupta" Bayless, and Hummels" "Threshold Investigation of Phase
Locked Discriminators", IEEE Trans.AES, V.AES 4,p.855, November
1968.

19. Abromowitz and Stegun,"Handbook of Mathematical Functions""National
Bureau of Standards, AMS 55, U.S.Gov't Printing Office,June 1964.

20. Kalman, R. E. , "A New Approach to Linear Filtering and Prediction
Problems", Jour. of Basic Engineering, ASME, p. 35, March 1960.

21. Kalman, R.E." and Bucy, R.S. ,"New Results in Linear Filtering and
Prediction Theory," Jour. of Basic. Eng. ,ASME, p. 95" March 1961.

22. McKean" H. P. ""Stochastic Integrals", Academic Press, 1969.

23. Tausworth" R., "Cycle Slipping in Phase-Locked Loops", JPL Tech. Rpt.
No.32-1127, Also" IEEE Trans. on Comm. Tech." V. COM-15"No. 3,
p. 417 ,June 1967.

24. Middleton, David, "Statistical Communication Theory", McGraw -Hill"
1960.

- R.2 -


